

pH Estimation of Fetal Scalp Blood using Magnetic Induction Spectroscopy Technique

By

Shazwani Sarkawi (1531311683)

A thesis submitteed in fulfillment of the requirements for the degree of Master of Science in Biomedical Electronic Engineering

School of Mechatronic Engineering UNIVERSITI MALAYSIA PERLIS

2017

ACKNOWLEDGEMENT

First and foremost, praises and thanks to the ALLAH, the Almighty, for His showers of blessings throughout my research work to complete the research successfully.

To my family, especially my parents, Mr Sarkawi Mohidi and Madam Frida Sarie, a thousand thanks for all of their support and constant encouragement. To my supervisor, Dr Zulkarnay Zakaria, senior lecturer of School of Mechatronic Engineering in UniMAP, thank you for his valuable support, dedicated and guidance during my entire Master research duration. His knowledge in this field has given me a chance to understand and utilize the knowledge I have so far, both theoretically and practically. Not forget to my co supervisor, Dr Nashrul Fazli for his guide and Dr Che Adilah Che Soh, Obstetrics and Gynaecology Specialist from Hospital Tuanku Fauziah for her opinion.

In addition, I appreciate to all my friends who had directly and indirectly help and guide me throughout the Master Research.

ii

TABLE OF CONTENTS

DECL	ARATION OF THESIS	i
ACKN	NOWLEDGEMENT	ii
TABL	E OF CONTENTS	iii
LIST	OF TABLES	vii
LIST	OF FIGURES	viii
LIST	OF ABBREVIATION	xii
LIST	OF SYMBOL	xiv
ABST	RAK	XV
ABST	RACT	xvi
CHAF	PTER 1: INTRODUCTION	1
1.1	Introduction	1
1.2	Introduction to pH Measurement, Magnetic Induction Spectroscopy and Ph	nase
	Shift	1
1.3	Problem Statement	4
1.4	Objectives	5
1.5	Scopes	5
1.6	Thesis Organization	6
CHAF	PTER 2: LITERATURE REVIEW	8
2.1	Introduction	8
2.2	Current Technology of pH Measurement	8

2.3 Fetal Scalp Sampling and Its Current Technology	11
2.4 Magnetic Induction Spectroscopy	15
2.5 Phase Measurement	21
2.6 Bohr Effect	24
2.7 Summary	26
CHAPTER 3: RESEARCH METHODOLOGY	27
3.1 Introduction	27
3.2 Research Overview	27
3.3 Simulation of Single Channel MIS using COMSOL Multiphysics	30
3.3.1 Simulation of MIS Sensor Probe in 3D	31
3.4 Hardware and Measurement System Development	39
3.4.1 Circuit Design and Simulation	41
3.4.1.1 Transmitter	41
3.4.1.2 Receiver	43
3.4.1.3 Preamplifier	44
3.4.1.4 Filter	46
3.4.1.5 Phase Detector	47
3.4.2 Hardware Development	49
3.4.2.1 Sensor Development	49
3.4.2.2 PCB Fabrication	50
3.4.3 Hardware Testing	53

3.4.3.1 Transmitter Testing	54
3.4.3.2 Receiver Testing	57
3.4.3.3 Amplifier Testing	58
3.4.3.4 Filter Testing	60
3.4.4 Sample Preparation	61
3.4.5 Experimental Setup	62
3.5 Summary	64
CHAPTER 4: RESULT AND DISCUSSION	65
4.1 Introduction	65
4.2 Simulation of the MIS system with COMSOL Multiphysics Software	65
4.2.1 Frequency range of MIS Setup	65
4.2.2 Sensor Geometry	68
4.2.3 Distance of Transmitter and Receiver Coil	70
4.2.4 Final Sensor Design	79
4.2.5 Validation on Sensor Model	94
4.3 Data Collection with MIS hardware	97
4.4 Data Accuracy	104
4.5 Summary	106
CHAPTER 5: CONCLUSION	107
5.1 Introduction	107
5.2 Conclusion	107

5.3 Research Findings	108
5.4 Recommendation of Future Works	108
REFERENCES	110
APPENDIX A	117
APPENDIX B	118
APPENDIX C	119
APPENDIX D	120
GLOSSARY	122
LIST OF PUBLICATIONS	123
LIST OF AWARDS	124
o this item is protected by	

LIST OF TABLES

NO.	PAGE
2.1 Condition of fetal scalp based on pH value	13
3.1 Sensor probe specification ("The Complete Fetal Scalp Blood Sampling pro	ocedure
pack," 2014)	35
3.2 Variation of hydrogen ion (H ⁺) based on pH (Mcpolin, 2016)	37
3.3 Design specification of transmitter design for 5Tx	49
3.4 Design specification of receiver design	50
4.1 Simulation results of 0.1 mm distance using silicone material	71
4.2 Simulation results of 0.08 mm distance using silicone material	73
4.3 Simulation results of 0.1 mm distance using ABS probe	75
4.4 Simulation result of 0.08 mm distance using ABS probe	77
4.5 Specification of final sensor design	79
4.6 Validation result for silicone	95
4.7 Validation result for ABS	96
4.8 Phase error percentage	104
4.9 Voltage error percentage	105
4.10 Error percentage between calculated pH value and real pH value	105

LIST OF FIGURES

NO	PAGE
1.1 pH range (Bishop, 2013)	2
1.2 Phase shift signal	3
2.1 System of the fiber optic sensor (Reed et al., 2009).	9
2.2 Optical pH sensor setup (Schyrr et al., 2014)	10
2.3 FBS procedure (Kaneshiro & Zieve, 2012)	12
2.4 Magnetic induction spectroscopy setup (Hermann Scharfetter et al., 2003)	16
2.5 Conductivity and permittivity behaviour over frequency – α , β and γ dispersi	on
(Heileman, Daoud, & Tabrizian, 2013)	19
2.6 Placement of transmitter and receiver	20
2.7 MIS phase diagram	22
2.8 MIS method based on hemisphere cancellation method (Jin, Sun, Qin, Tang,	et al.,
2014)	24
2.9 O ₂ saturation of haemoglobin vs pCO ₂ (OpenStax, 2013)	25
3.1 Flowchart of the research	29
3.2 Simulation step	30
3.3 Suggested design of MIS probe	31
3.4 MIS design in COMSOL (XZ-view)	32
3.5 MIS sensor design in COMSOL (XY-view)	32
3.6 Coil geometry in COMSOL	34
3.7 Coil selection in COMSOL	34
3.8 Coil specification in COMSOL	35
3.9 Distance between transmitter and receiver (x-y view)	36

3.10 Block diagram of circuit setup	40
3.11 Pin configuration of OPA693	42
3.12 MIS transmitter circuit design	42
3.13 Pin configuration of AD8129	43
3.14 MIS receiver circuit design	44
3.15 Pin configuration of LMH6609	45
3.16 MIS amplifier circuit design	45
3.17 MIS filter circuit design	46
3.18 Filter bode plot	47
3.19 MIS phase detector circuit	48
3.20 Pin configuration of AD8302	48
3.21 Example of transmitter coil	49
3.22 Example of receiver coil	50
3.23 PCB before mounted	52
3.24 PCB after mounted	53
3.25 Circuit testing setup	54
3.26 Simulation result of transmitter output of +1	55
3.27 Simulation result of transmitter output for -1	55
3.28 Experimental result for transmitter +1	56
3.29 Experimental result for transmitter -1	56
3.30 Receiver simulation result	57
3.31 Receiver experimental result	58
3.32 Simulation result for amplifier	59
3.33 Experimental result for amplifier	59
3.34 Comparison of theoretical filter and experimental filter	61

3.35 Experimental setup	62
3.36 Sensor placement	63
3.37 Sample placement	63
4.1 Magnetic field received at receiver for each frequency	66
4.2 Comparison of magnetic field received between environments without tissue	
properties with tissue properties	67
4.3 Magnetic field results for linear coil sensor design	68
4.4 Magnetic field results for circular coil sensor design	69
4.5 Phase shift for silicone material with 0.1mm distance	72
4.6 Phase shift for silicone material with 0.08mm distance	74
4.7 Phase change for ABS material with 0.1 mm distance	76
4.8 Phase shift for ABS material with 0.08 mm distance	78
4.9 Phase shift value at 2 MHz for silicone probe	80
4.10 Phase shift value at 4 MHz for silicone probe	81
4.11 Phase shift value at 6 MHz for silicone probe	82
4.12 Phase shift value at 8 MHz for silicone material	83
4.13 Phase shift value at 10 MHz for silicone material	84
4.14 Phase shift value at 15 MHz for silicone probe	85
4.15 Phase shift value at 20 MHz for silicone probe	86
4.16 Phase shift value at 2 MHz for ABS probe	87
4.17 Phase shift value at 4 MHz for ABS probe	88
4.18 Phase shift value at 6 MHz for ABS probe	89
4.19 Phase shift value at 8 MHz for ABS probe	90
4.20 Phase shift value at 10 MHz for ABS probe	91
4.21 Phase shift value at 15MHz for ABS material	92

- 4.22 Phase shift value at 20MHz for ABS material 93 4.23 Result of circular pair 5Tx-10Rx 98 4.24 Result of circular pair 5Tx-12Rx 99 100 4.25 Phase result 5Tx-10Rx pair 4.26 Phase result 5Tx-12Rx pair 100
- 4.27 Linear regression plot of 5Tx-10Rx 102

103

4.28 Linear regression plot of 5Tx-12Rx

o this term is protected by original conviet

LIST OF ABBREVIATION

ABS	Acrylonitrile Butadiene Styrene
CHCM	Contra Hemisphere Cancellation Method
CTG	Cardiotocography
DRBEM	Dual Reciprocity Boundary Element Method
EM	Electromagnetic
FBS	Fetal Blood Sampling
FHR	Fetal Heart Heart
GUI	Graphical User Interface
HCl	Hydrochloric Acid
MATLAB	Matrix Laboratory
MIPS	Magnetic Inductive Phase Shift
MIS O	Magnetic Induction Spectroscopy
MIT	Magnetic Induction Tomography
NaCl	Sodium Chloride
NaoH	Sodium Hydroxide
РСВ	Printed Circuit Board
PEP	Passive Electrical Properties

- pН Potential of hydrogen
- RMSE Root Mean Square Error
- ROI Region of Interest
- Rx Receiver
- ST Segment Analysis STAN
- Tx

orthis item is protected by original conviet

LIST OF SYMBOL

- Ω Ohms
- Permeability μ
- Permittivity Е
- Conductivity σ
- Carbon Dioxide CO_2

- orieinal copyright .on .ydroxyl ion Partial pressure of carbon dioxide V Voltage Voltage

xiv

Penganggaran pH Darah Kulit Kepala Janin Menggunakan Teknik Magnetik Induksi Spektroskopi

ABSTRAK

Tesis ini menerangkan tentang pengenalan teknik baru bagi penganggaran pH kulit kepala janin menggunakan teknik aruhan magnet. Teknik aruhan magnet adalah satu pendekatan yang bukan invasif yang menggunakan medan magnet untuk menentukan sifat-sifat elektrik pasif sesuatu bahan. Hubungan di antara signal yang diterima di penderia penerima dengan nilai pH telah dikaji. Perisian COMSOL digunakan untuk simulasi reka bentuk kuar penderia. Simulasi dilakukan dengan beberapa parameter seperti julat frekuensi, geometri penderia, bilangan lilitan dan jarak antara penderia pemancar dan penerima. Ini dilakukan untuk menentukan reka bentuk teknik aruhan magnet yang sesuai untuk diaplikasi dalam pengukuran pH model kulit kepala janin. Keputusan yang terbaik daripada setiap parameter akan digabung untuk menjadi reka bentuk muktamad, dan dibuat dalam bentuk peranti. Persamaan matematik diperoleh untuk menunjukkan hubungan di antara voltan dan pH. Hasil kajian menunjukkan bahawa teknik aruhan magnet mampu untuk mengesan perubahan pH dalam darah kulit kepala janin. Julat frekuensi yang digunakan mestilah berada dalam lingkungan MegaHertz untuk meningkatkan pengeluaran medan teraruh. Gegelung bulat dipilih sebagai sensor geometri paling sesuai kerana boleh mengenalpasti perubahan kecil hidrogen dalam darah kulit kepala janin. Jarak antara gegelang pemancar dan penerima adalah 0.08 mm kerana kekuatan medan magnet berkurang dengan penambahan jarak. Peratusan ralat yang diperoleh daripada ramalan persamaan matematik adalah kurang daripada 1% dan nilai minimum korelasi yang diperoleh antara signal teraruh dan pH adalah 0.9190.

OTHIS

pH Estimation of Fetal Scalp Blood using Magnetic Induction Spectroscopy Technique

ABSTRACT

This thesis describes the development of fetal scalp pH estimation utilizing magnetic induction spectroscopy technique. Magnetic induction spectroscopy is a non-invasive approach that applies a magnetic field to determine the passive electrical properties. The relationship of the induced signal at the receiver and fetal scalp pH value was investigated. COMSOL Multiphysics[®] software was used to simulated sensor probe design. The simulation was done with several parameters such as frequency range, sensor geometry, number of turns and distance between transmitter and receiver coil to determine the suitable single channel magnetic induction spectroscopy technique for fetal scalp pH measurement design. The best result from parameters simulation was combined and finalized to be final sensor design. Then, the hardware was develop according to the simulation result. Mathematical equation was derived to show the relationship between voltage and pH. The result shows that the magnetic induction spectroscopy was capable to detect pH changes in the fetal scalp blood mimic model. The frequency range must be in the range of MegaHertz to increase the production of induced field. Circular coil was choose as the most suitable sensor geometry due to its sensitivity to detect smallest hydrogen conductivity changes in fetal scalp blood mimic model. The distance between the sensing coils of 0.08 mm was better than 0.1 mm because the strength of the field decreases with increasing distance from the wire. The error percentage acquired from prediction mathematical equation was less than 1% and the correlation obtained between the induced signal and pH was greater than 0.9190.

CHAPTER 1

INTRODUCTION

1.1 Introduction

This chapter is an introduction to the research. In this chapter, explanation on the pH measurement and magnetic induction spectroscopy will take place. The problem statement and the scopes are also briefly explained in this chapter.

1.2 Introduction to pH Measurement, Magnetic Induction Spectroscopy and Phase Shift

Potential of hydrogen (pH) measurement is important in many areas of applications. pH can be defined as a degree of acidity or alkalinity of the solution. This pH value is limited by the value of hydrogen or hydroxyl ions presents in a solution. The acid solution consists of a higher relative number hydrogen ions, whereas alkaline or basic solution consists of higher relative number of hydroxyl ions (David, 2003; Filomena Camoes, 2010). The retention of the hydrogen and hydroxyl can vary over 14 orders of magnitude in water, where 1 to 6.99 is indicated as acid, 7 is neutral and 7.1 to 14 is alkaline as shown as in Fig 1.1. A simple pH indicator uses a colour as the indicator or preferences to determine the pH value.

Figure 1.1: pH range (Bishop, 2013)

A pH meter is basically a voltmeter with high input impedance which assesses the voltage of an electrode. This electrode is sensitive to the hydrogen ions concentration, relative to another electrode which displays a constant voltage. The increase of acidity leads to greater voltage, thus causing the reading of pH meter to decrease. Therefore, an increase of hydroxyl ions indicates an increased alkalinity, causing a decrease in voltage reading.

The Magnetic Induction Spectroscopy (MIS) is a non- invasive technique which claims uses of a magnetic field to determine or aiming on the passive electrical properties (PEP) such as conductivity (σ), permittivity (ϵ) and permeability (μ) of biological tissues at difference frequencies (Dávila, Gutierrez, & Blanco, 2012). Originally, MIS is known as single channel multi-frequency Magnetic Induction Tomography (MIT) system. Previously, MIS system was used by 'Graz Austria Group' to measure the conductivity spectrum of biological tissue (Hermann Scharfetter et al., 1999; Hermann Scharfetter, Casañas, & Rosell, 2003; Hoe, 2011;). This non-invasive technique is preferable on measuring of pH due to the detection of the electrical properties without contact to the solution will reduce the time of measurement. The common practice of pH yields slower response in obtaining the result. MIS is a passive detection that can detect an object by using a multiple-frequency and induced magnetic fields which are applied through the system to get different output wave due to the interaction between different materials through the samples.

The phase shift or phase angle is the time relationship of two periodic signals of the same frequency. The phase or the relative phase different of these periodic signal can be measured if both were derived from a synchronous source, as shown in Fig 1.2.

Figure 2 shows the case for a single-tone sinusoidal wave. Phase measurement or a periodic signal which has extra harmonic or frequency components present, such as multitone signals, can also be determined. The magnitude and phase of a multi-tone signal can be calculated by the Fourier transform method which provides a very convenient method to determine the relative phase for all frequency components simultaneously.

1.3 Problem Statement

The intrapartum estimation of fetal well-being presents a challenge to the obstetrician (Henderson & Ecker, 2003). The fetus depends on themother for the placental exchange of oxygen and carbon dioxide. Disruption during the exchange process can cause fetal hypoxia, which may lead to acidosis (Bobrow & Soothill, 1999) and in worst case, it will cause complete disruption of maternal – fetal gas exchange, such as cord prolapse and placenta abruption which can lead to neonatal encephalopathy (Kendall & Peebles, 2005). Several techniques may use to evaluate this condition including direct analysis of fetal blood acquired from scalp sampling or fetal blood sampling.

Fetal blood scalp sampling (FBS) is a common test utilized before the mother giving birth to determine the oxygen level of the infant through blood pH. This test is crucial in order to determine whether the fetal is ready to be delivered. Besides that, it helps to identify the suitable technique to deliver the baby, either by normal birth or caesarean method (Jørgensen & Weber, 2014b; Holzmann, Wretler, Cnattingius, & Nordström, 2015). However, this method needs a small incision on the fetal scalp and the drop of blood is collected using a thin heparinized capillary tube (Women and Newborn Health Service, 2008). The blood then taken to the lab for analysis and the median time taken for the test was 18 minutes had been reported (Tuffnell, Haw, & Wilkinson, 2006; Annappa, Campbell, & Simpson, 2008). Although blood sample may be safely retrieved from the scalp during labor, pitfalls may occur during this invasive method, such as inadequate incision, which may lead to continuing bleeding and infection at the puncture site (Carbonne & Nguyen, 2015). Current FBS method also may leave the bruise and scar at the baby scalp and not suitable to the mother with an infection such as HIV or Hepatitis B (Kaneshiro & Zieve, 2012). Besides that, the analysis of pH requires a relatively large amount of blood (30µl-50µl) (Wiberg-Itzel et al., 2008) and sampling failure rates of 10% have been reported (Carbonne & Nguyen, 2016). Considering the risks of the current FBS method, new FBS method by employing magnetic induction spectroscopy (MIS) technique through phase shift approach is introduced which can be done without incision at the fetal scalp.

1.4 Objectives

- 1. To design and simulate suitable single channel magnetic induction technique for fetal scalp measurement.
- 2. To investigate the relationship between produced voltage at the receiver over the pH value of the solution of interest through an application of magnetic induction technique.
- 3. To assess fetal scalp pH estimation employing magnetic induction spectroscopy technique by using an acid solution to mimic pH blood.

1.5 Scopes

The scope of this research was to design and simulate MIS system to detect fetal pH measurement by using COMSOL Multiphysics[®] version 5.0 (2014). This single channel consists of one transmitter coil (Tx) and one receiver coil (Rx). The applied frequency was in the range of 2 MHz to 20 MHz to increase the production of the induced field. For hardware parts, the Multisims software version 12.0 (2012) was used to simulate the

circuit design. The circuit is then printed into PCB board to do the measurement. The pH solution of an acid sample was used to mimic the pH of the blood. The range of pH was from 7.0 to 7.4 to cover all three stages of FBS condition which are Acidemia, Pre Acidemia and Normal.

1.6 Thesis Organization

The thesis is separated into five chapters. Chapter 1 of this thesis describes the introduction part of the research. The purposes of this chapter are to give a brief introduction to the reader's to understand what they will go throughout this thesis and what they can expect in this investigation. It consists of the problem statement, objectives and scope of this research conducted.

Chapter 2 explained the literature review collected to conduct this investigation. This chapter intends to give some review to the readers about the scope of the research that has been done. This chapter includes current technology of pH measurement, current technology of fetal blood sampling, magnetic induction spectroscopy, phase measurement and also Bohr Effect.

Chapter 3 explicates about the methodology to be used in this research. This chapter is divided into two parts, simulation of single channel MIS measurement by using COMSOL Multiphysics and development of hardware measurement. At this chapter, readers would be able to recognize the method that is used in order to achieve the objective of this research. Chapter 4 presents the results and discussions obtained from this investigation. This section is also divided into two parts, simulation results and data collection results. The discussion will be based on the results obtained to support the objectives.

Chapter 5 provides the conclusion of this thesis. In this chapter, readers can find the summarization obtained throughout the research.

orthis item is protected by original copyright

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter discussed the current technology of the pH measurement, fetal scalp sampling, phase measurement and a background review of magnetic induction spectroscopy. These include the previous research that has been done and the current 2.2 Current Technology of pH Measurement of the invasive to its Non-invasive to its No

Non-invasive technique for measuring the pH value had been researched with several methods. For example, magnetic resonance spectroscopy, optical technique and fluorescent technique (Kimball, Furlong, Us, & Pierskalla, 2005).

In medical field biological processes, the human body require a narrow range of pH for normal condition, where significant changes in pH from this range may be life threatening (Kimball et al., 2005). Thus an accurate and stable pH measurement system should be researched to overcome these issues. One of the methods that had been proposed is by using a hyperpolarized carbon dioxide and bicarbonate as a medium to measure the intracellular pH in the heart. The implementation of magnetic resonance spectroscopy (MRS) to measure the pH value of the blood in the heart have been studied by Marie et al. However, there are limitation on this method which is hyperpolarized medium not directly distinguish between the metabolites that are located in the intracellular and also in the extracellular spaces (M. A. Schroeder et al., 2010). In addition, the previous study

stated that a cardiac pH in vivo measurement using MRS is not possible due to 2, 3diphosphoglycerate (2, 3-DPG) in the ventricular blood contaminates the myocardial inorganic phosphate peak. This is not suitable to be utilized in real time measurement of a pH in human intracellular.

In another method, fiber optic fluorescence sensor can be measured a pH value from the platelets concentration. This method uses a non-invasive fluorescence reader and was tested using Blood Gas Analyzer. This test is a syringe-based sample and with some parameter measurement and the setup is shown in Fig 2.1. The pH sensor on this system was determined the pH in both phosphate-buffered salines and in platelets concentration. The accuracy of the sensor determined instead of pH value. In comparison to colorimetric, the fluorescent pH indicator has advantages based on sensitivity and it has been immobilized on solid support. Thus, the advantage of this feature is used to develop the fiber optic sensor to calculate the pH blood value (Reed et al., 2009).

Figure 2.1: System of the fiber optic sensor (Reed et al., 2009).