

A Review of Zinc Oxide-Tin Oxide (ZnO-SnO₂) Nanocomposite for Humidity Sensors

A. F. A. M. Yusof^{1, 3}, N. D. Md Sin^{2, 3*}, S. A. Kamal^{1, 3}, M. H. Mamat^{1, 3}, Mohamad Zhafran Hussin², Khairul Kamarudin Hasan², Mohd Hanapiah Abdullah^{1, 4}, and Noor Asnida Asli⁵

¹ School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia.

²School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA, Cawangan Johor Kampus Pasir Gudang, 81750 Masai Johor, Malaysia.

³ NANO-ElecTronic Centre (NET), Universiti Teknologi MARA (UiTM) Selangor, 40450 Shah Alam, Selangor, Malaysia.

⁴School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang, Malaysia.
⁵NANO-SciTech Lab, Functional Materials and Nanotechnology Centre, Institute of Science,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia.

Received 20 July 2021, Revised 27 April 2022, Accepted 24 June 2022

ABSTRACT

This paper reviews the fabrication of zinc oxide-tin oxide (ZnO-SnO₂) nanocomposite in humidity sensors. ZnO and SnO₂ each has a wide energy band gap, making them suitable for producing high-quality humidity sensors. Also, ZnO and SnO₂ are the ideal heterojunctions with high sensitivity and thermal stability. When combined, ZnO-SnO₂ nanocomposite is an n-type semiconductor with high versatility in many applications, such as gas sensors, lithium-ion batteries, and photocatalytic degradation. Besides, the nanostructure film of ZnO-SnO₂ is relatively easy to prepare and characterise while manipulating ZnO and SnO₂ could enhance device performances. Thus, the nanostructure of ZnO-SnO₂ would likely measure the humidity sensing performance easily.

Keywords: Humidity mechanism, humidity sensor, nanocomposite, SnO₂, ZnO

1. INTRODUCTION

Humidity sensors play an important role in many industries and applications, such as pharmaceutical processing, medical health, meteorological monitoring [1], and food safety [2]. The photocatalytic property, gas sensing [3-4], and humidity sensing properties [5] of metal oxide have now generated considerable interest among scientists.

One of the ideal candidates of semiconductor metal oxides is zinc oxide (ZnO). Thus, studying the characteristics, structures, advantages, and methods of ZnO fabrication would help to understand the suitability of ZnO at different conditions, such as at extreme environments, low-level humidity detection, and high humidity level. Besides, ZnO could be used for humidity sensors due to its wide specific surface area, high thermal stability, high electron mobility, and high oxidation, as well as economical [6 - 8].

Apart from ZnO, tin oxide (SnO_2) is a good insulator with few carriers but is non-stoichiometric. It is an n-type semiconductor with a bandgap of 3.6eV, transparent, and conductive [9] because it has many charge carriers. Thus, SnO_2 is suitable for many applications, such as solid-state gas sensors, sensing, and measurement advanced sensors for power generation, optical-electronic

^{*} diyana0366@uitm.edu.my

devices, rechargeable Li batteries, solar cells, optical devices, and low emission glass due to its good optical, chemical, and electrical properties [10 - 12].

Titanium dioxide (TiO_2) is also semiconducting material with a bandgap ranging from 2.85 to 3.15 eV. Various applications have used it due to its high chemical stability, non-toxicity nature and wide bandgap. However, the sensing performances of TiO₂ generally suffer from insufficient long-time stability, high resistance, cross-selectivity and limited application [13]. Previous researchers investigated on ZnO/TiO₂ composite by using sol-gel process. The comparison of pristine TiO₂ films, ZnO nanorods and ZTNA was considerably enhanced through coating of nanorod template with an anatase TiO₂ shell on humidity sensing performances. The response and recovery behaviour of the substrate was not affected by the composition formation [13].

ZnO and SnO₂ are the best materials and commonly used in solar cells, gas sensors, and humidity sensors [14-15]. The manipulations of ZnO and SnO₂ can improves the performance of these sensors such as humidity sensor. Many researchers investigated the ZnO-SnO₂ composite using various methods, such as electrospinning, hydrothermal, and spin-coating. These studies indicated that fabricating the composition ZnO-SnO₂ on the ZnO layer to create double-layer films could improve the sensor's performance. Besides, the deposition of ZnO-SnO₂ showed good potential because of its wide bandgap. These films stabilise the humidity sensor substantially [16-19].

Meanwhile, there are many humidity sensors, such as humidity capacitors, thermal, and humidity-sensitive resistors. In general, a good humidity sensor possesses several important characteristics, i.e., low hysteresis, high sensitivity, fast recovery, and rapid responses. Other good characteristics of a humidity sensor include high thermal stability and long lifetime. Overall, a humidity sensor measures the quantity of water vapour present in the air. It calculates the atmospheric water vapour content as relative humidity and absolute humidity.

This paper reviews the $ZnO-SnO_2$ nanocomposites of the humidity sensor. These nanocomposites were fabricated into the humidity sensor using various methods, such as sol-gel, spin-coating, and electrospinning. The structural, optical, electrical, and humidity sensing performances of the nanocomposite films were discussed.

2. MECHANISMS OF HUMIDITY

Humidity is the quantity of water vapour present in a gas or a mixture of gases [20]. For example, nitrogen is a pure gas, but the air is a mixture of various gases. Humidity is commonly measured in units, such as relative humidity (rh), dew/frost point (D/FPT), and parts per million (PPM). rh is a ratio of the atmospheric moisture content to the maximum (saturation) vapour pressure of the gas at a given temperature [20]. In general, rh can be classified into semiconductor, ceramic, and polymer. To better understand the performance of a humidity sensor and the temperature effect, the relative sensing signal (S), response, and recovery durations of times were evaluated. Specifically, the relative sensing signal S of the sensor is given in Equation 1 [20]:

$$S = \left(\frac{Ra - Rrh}{Ra} x 100\right) \tag{1}$$

where Ra is the resistance at 15% Rh and Rrh is the total resistance measured for the sensor. This describes the response time of adsorption or the recovery time of desorption for a sensor to reach a 90% change in the total resistance.

The sensitivity of the films to humidity (S) could be determined by Equation 2 [21].

$$S = \frac{I_{90\% \, rh}}{I_{40\% \, rh}} \tag{2}$$

where $I_{40rh\%}$ is the sensor current at initial humidity level (40% rh) and $I_{90rh\%}$ is the sensor current at 90% rh. The response/recovery times are referring to the time taken for the film to reach 90% of current changes during adsorption/desorption processes [21].

Specifically, surface metal cations with high charge-carrier density will absorb the hydroxyl group of each water molecule. The electrostatic force will be strong enough to break one of the O-H bonds of the H₂O molecules, building a strong chemical bond between the metal and hydroxyl ions (M⁺ and OH⁻) [22].

At low humidity levels, the physisorbed layer is absent and only a chemisorbed layer is present. The chemisorbed is formed on the first contact with water vapour but is unaffected by changes in humidity. However, once the temperature increases, this layer will disappear due to the conduction of proton hopping between the hydroxyl groups. The primary source of charge carriers is derived from the proton released during the hydration of H_3O^+ . At high humidity levels, the protons between neighbouring water molecules hop more easily, and the transportation of charge carriers follows the Grotthuss chain reaction. The sensitivity of the sensor increases significantly along with the relative humidity. The proton conduction reactions for low (LH) and high humidity (HH) levels are given in Equations 3 and 4 [22], while Figure 1 shows the adsorption of water molecules on the nanocomposite surface of ZnO-SnO₂.

$$H_2O \leftrightarrow H^+ + OH^-(LH)$$
(3)

 $2H_20 \leftrightarrow H20^+ + 0H^-(HH)$

3. HUMIDITY MATERIALS

Humidity sensing and control are especially important for various industrial fields and human life. The dominant functions of humidity sensors have traditionally been used for humidity control in heating, food packing, the manufacture of electronic equipment, and meteorology stations [20, 22]. Several researchers had developed a sensing device formed on nanostructural semiconductors of metal oxides with excellent chemical reactive surfaces that have waterabsorbing, mechanical durability, and thermal stability [14, 21].

(4)

In a humidity sensor, a large surface area leads to a high performance of the sensor. Changes in the electrical signal in humidity are attributable to the adsorption of water molecules from the atmosphere on the surface of the sensing materials. Thus, large surface area and electron concentrations are beneficial to sense the change of humidity sensing in the humidity sensor due to the exposure of more active sites to the adsorbed water molecules [23].

In a study that investigated the optimum performance of humidity sensing devices at different Sn concentrations, TZO was deposited on a seed layer-coated glass substrate by sonicated sol-gel immersion method. The result indicated that increasing the concentration of Sn will decreased the size of crystallite, diameter, and thickness of the nanoparticle [23]. Meanwhile, the ZnO-SnO₂ nanoparticle films were characterised using the spin-coating and immersion method [24]; the ZnO-based humidity sensor showed a minimum varying current, indicating that the composite structure strongly improved the sensor's performances.

In the investigation of the SnO₂ nanoparticles for humidity sensor via the sol-gel route [25], it was reported that the nanostructure of SnO₂ based thin film with leaf structure enhances feasibility for detecting humidity sensing. The humidity ranged from 10 to 90% rh, and the leaf-shaped SnO₂ showed high sensitivity 1.8 nW/% at room temperature. Besides, the colloidal SnO₂ nanowires on the humidity sensor were studied by spin-coating, and the high surface activity of SnO₂ nanowires worked effectively, with high sensitivity and fast response [26].

Also, ZnO nanosheets were synthesised on the aluminium (Al) layer with different Al thicknesses for humidity sensors [27]. The results indicated that reducing the thickness of the Al layer changed the ZnO structure from nanosheet to nanorod [27]. Besides, the sensor performance of Au-ZnO was examined using different concentrations of Au nanoparticles as a modifier [28]. When water molecules were adsorbed on the surface of the Au-ZnO nanosheets, more electrons reacted with x, thus enhancing the sensor performance. Table 1 shows the performances of humidity materials that researchers had studied.

Material	Performances	Methodology	References
TZO nanoarod arrays	3.36 (Ra/Rrh)	Sol-gel	[23]
ZnO-SnO ₂ nanoparticle	90.60 (R _a /R _{rh})	Spin-coating, immersion	[24]
SnO ₂ nanoparticle	0.43 to 1.80nW/%RH	Sol-gel	[25]
SnO ₂ nanowires	1993 Hz	Colloidal	[26]
ZnO nanosheets	43.40 to 2.96% (10 ppm)	Nanogenerators (NG)	[27]
Au-ZnO nanosheets	3.00%	Hydrothermal	[28]

Table 1 Humidity materials

4. DEVICE CONFIGURATION

Currently, nanotechnology is one of the important technologies in the industries such as electronics, medicine, and agriculture. In this respect, metal oxides of ZnO and SnO₂ are one of the most versatile semiconductors [31-34] because they are essential constituents in various devices, such gas sensor, humidity sensor [29-30], and lithium-ion batteries. Although there are studies on the fabrication and characterisation of ZnO and SnO₂ composite nanostructure, a few of them used ZnO and SnO₂ as humidity materials [35-39].

Besides, few studies were conducted on the heterostructure metal oxide for humidity sensing. In humidity sensors, a single-layer thin film is often associated with several disadvantages such as poor free carriers and possesses high resistive film. Also, although the combination of ZnO and SnO₂ has been widely used in gas sensors and solar cells, it is not commonly used in humidity sensors [21, 29], especially not when combined in a double-layer structure. Given that the conduction band of SnO₂ is lower than ZnO, i.e., electrons would pass from ZnO to SnO₂ in the double-layer thin film, the ZnO and SnO₂ should improve the sensor's sensitivity.

The humidity performance of the ZnO films was examined in the preparation of the ZnO nanorod array via Fe-doping at low temperature using the sol-gel and spin-coating methods [21]. X-ray diffraction (XRD) showed that compared to ZnO, the size of crystallite and lattice constant of Fe-doped ZnO were smaller. Besides, the Fe-doped ZnO showed a smaller diameter around 10 nm and 85 nm at tip and middle parts, respectively with a lower thickness approximately 1.44 μ m compared to ZnO. ZnO having averages diameters of 105 nm and thickness approximately 1.51 μ m, respectively. The Fe-dope ZnO showed good electrical property with quick response and fast recovery time, i.e., it had good potential in sensing.

Figure 2. The surface reaction of ZnO-SnO₂: (a) in the absence of humidity, (b) in the presence of humidity, and (c) the energy band of ZnO-SnO₂ [24].

Figure 2 shows the surface response of SnO_2 -ZnO in the absence and presence of humidity. The characteristics of SnO_2 -ZnO, such as structural, electrical, and humidity sensing performance at different times of SnO_2 deposition had been well studied by the methods spin-coating and immersion [24]. When ZnO was deposited with SnO_2 , the surface area increased. However, the grain and crystallite decreased in size owing to the increment of the SnO_2 thickness. The fabrication of ZnO-SnO2 on the ZnO layer created double-layer films to improve the sensor's performance [24].

In another study that investigated the application of humidity sensors on high sensitivity over varying humidity levels using the sol-gel method [29], the hierarchical Sn-doped ZnO nanorod was fabricated. XRD revealed that the Sn-doped ZnO showed slightly higher intensity than the undoped ZnO. Compared to the undoped ZnO, the Sn-doped ZnO had a smaller crystallite size, diameter, and thickness but with higher sensitivity. Figure 3 shows the water adsorption on the surface of the ZnO nanorod.

5. CONCLUSION

This review discussed how the humidity sensor depends on the deposition of ZnO-SnO₂ anocomposite. Besides, the mechanism of the humidity sensor on metal surfaces was examined. In this paper, the use of ZnO-SnO₂ as metal oxide humidity sensor is presented in detail. The deposition of ZnO-SnO₂ showed good potential as a humidity sensor. Furthermore, the properties that had been reviewed in this paper are structural, optical and electrical including sensitivity, reaction time and stability. In general, ZnO and SnO₂ were widely used in many industries or devices, such as rechargeable Li batteries, thermal, optoelectronic and solar cells. Thus, further studies on fabricating ZnO-SnO₂ nanocomposites onto humidity sensors are essential.

Figure 3. Water adsorption on the surface of ZnO nanorod: (a) at 40% RH (initial stage), (b) at the average between 40to 90% RH, and (c) at 90% RH (the final level of humidity) [29]

ACKNOWLEDGEMENTS

The author would like to the employees of NANO-ElecTronic Centre kindly helped in completing the experimental work. Thanks also to Research Management Centre (RMC), Universiti Teknologi MARA (UiTM) and Ministry of Higher Education (MOHE) for financial support (600-IRMI/FRGS RACER 5/3 (010/2019).

REFERENCES

- [1] W. Meng, S. Wu, X. Wang, and D. Zhang, "High-sensitivity resistive humidity sensor based on graphitic carbon nitride nanosheets and its application," Sensors Actuators, B Chem., vol. 315, no. March, p. 128058, 2020.
- [2] Y. Bouzembrak, M. Klüche, A. Gavai, and H. J. P. Marvin, "Internet of Things in food safety: Literature review and a bibliometric analysis," Trends Food Sci. Technol., vol. 94, pp. 54– 64, 2019.

- [3] J. Wang, H. Shen, Y. Xia, and S. Komarneni, "Light-activated room-temperature gas sensors based on metal oxide nanostructures: A review on recent advances," Ceram. Int., no. September, 2020.
- [4] I. J. Choi et al., "Fabrication of a room-temperature NO2 gas sensor using morphology controlled CVD-grown tellurium nanostructures," Sensors Actuators B Chem., no. 2, p.128891, 2020.
- [5] H. Chi, L. J. Ze, X. Zhou, and F. Wang, "GO film on flexible substrate: An approach to wearable colorimetric humidity sensor," Dye. Pigment., vol. 185, no. PA, p. 108916,2021.
- [6] A. B. Rosli, S. S. Shariffudin, Z. Awang, and S. H. Herman, "Deposition temperature dependence of ZnO nanostructures growth using TCVD for EGFET pH sensor," Proc. 2017 IEEE Reg. Symp. Micro Nanoelectron. RSM 2017, pp. 175–178,2017.
- [7] X. Zheng et al., "ZnO-SnO2 nano-heterostructures with high-energy facets for high selective and sensitive chlorine gas sensor," Ceram. Int., vol. 46, no. 17, pp. 27499–27507,2020.
- [8] A. S. Ismail et al., "Enhanced humidity sensing performance using Sn-Doped ZnO nanorod Array/SnO2 nanowire heteronetwork fabricated via two-step solution immersion," Mater. Lett., vol. 210, pp. 258–262, 2018.
- [9] J. Gajendiran and V. Rajendran, "A study of the nano-structured aggregated tin oxides (SnO2/SnO) and their structural and photoluminescence properties by a hydrothermal method," *Mater. Lett.*, vol. 139, pp. 116–118, 2015.
- [10] B. Zhao et al., "Atomic layer deposition of ZnO–SnO2 composite thin film: The influence of structure, composition and crystallinity on lithium-ion battery performance," Electrochim. Acta, vol. 320, p. 134604, 2019.
- [11] L. Luo et al., "Electrospun ZnO-SnO2 composite nanofibers with enhanced electrochemical performance as lithium-ion anodes," Ceram. Int., vol. 42, no. 9, pp. 10826–10832, 2016.
- [12] W. Ali et al., "Synthesis of TiO2 modified self-assembled honeycomb ZnO/SnO2 nanocomposites for exceptional photocatalytic degradation of 2,4-dichlorophenol and bisphenol A," Sci. Total Environ., vol. 746, 2020.
- [13] L. Gu *et al.*, "Humidity sensors based on ZnO/TiO2 core/shell nanorod arrays with enhanced sensitivity," Sensors Actuators, B Chem., vol. 159, no. 1, pp. 1–7, 2011.
- [14] Y. Zhang et al., "Porous ZnO–SnO2–Zn2SnO4 heterojunction nanofibers fabricated by electrospinning for enhanced ethanol sensing properties under UV irradiation," J. Alloys Compd., vol. 854, p. 157311, 2021.
- [15] Q. M. Fu et al., "Highly sensitive ultraviolet photodetectors based on ZnO/SnO2 core-shell nanorod arrays," Appl. Surf. Sci., vol. 527, no. May, p. 146923, 2020.
- [16] S. Dong et al., "A novel and high-performance double Z-scheme photocatalyst ZnO-SnO2-Zn2SnO4 for effective removal of the biological toxicity of antibiotics," J. Hazard. Mater., vol. 399, no. March, p. 123017, 2020.
- [17] A. Saldaña-Ramírez, M. R. A. Cruz, I. Juárez-Ramírez, and L. M. Torres-Martínez, "Influence of the power density and working pressure in the magnetron co-sputtering deposition ofZnO–33 SnO2 thin films and their effect in photocatalytic hydrogen production," Opt. Mater. (Amst).,vol. 110, no. September, 2020.
- [18] Z. L. Guo et al., "Enhanced electron extraction using ZnO/ZnO-SnO2 solid double-layer photoanode thin films for efficient dye sensitized solar cells," Thin Solid Films, vol. 684, no. March, pp. 1–8, 2019.
- [19] D. Upadhaya, Talinungsang, P. Kumar, and D. D. Purkayastha, "Tuning the wettability and photocatalytic efficiency of heterostructure ZnO-SnO 2 composite films with annealing temperature," Mater. Sci. Semicond. Process., vol. 95, no. January, pp. 28–34, 2019.
- [20] S. Ghanem, A. Telia, C. Boukaous, and M. S. Aida, "Humidity sensor characteristics based on ZnO nanostructure grown by sol-gel method," *Int. J. Nanotechnol.*, vol. 12, no. 8–9, pp. 697–707, 2015.
- [21] A. S. Ismail et al., "Structural modification of ZnO nanorod array through Fedoping:Ramification on UV and humidity sensing properties," Nano-Structures and Nano-Objects, vol.18, p. 100262, 2019.

- [22] S. Narasimman, U. Dinesh, L. Balakrishnan, S. R. Meher, R. Sivacoumar, and Z. C. Alex, "A comparative study on structural, optical and humidity sensing characteristics of ZnO, SnO2 and ZnO:SnO2 nanocomposite," *Sens. Lett.*, vol. 15, no. 5, pp. 440–447, 2017.
- [23] A. S. Ismail et al., "Modulation of Sn concentration in ZnO nanorod array: intensification on the conductivity and humidity sensing properties," J. Mater. Sci. Mater. Electron., vol. 29, no.14, pp. 12076–12088, 2018.
- [24] A. S. Ismail et al., "Heterogeneous SnO2/ZnO nanoparticulate film: Facile synthesis and humidity sensing capability," Mater. Sci. Semicond. Process., vol. 81, no. February, pp. 127–138, 2018.
- [25] P. Kumar, S. Khadtare, J. Park, and B. C. Yadav, "Fabrication of leaf shaped SnO2 nanoparticles via sol-gel route and its application for the optoelectronic humidity sensor," Mater. Lett., vol. 278, p. 128451, 2020.
- [26] N. Gao et al., "QCM-based humidity sensor and sensing properties employing colloidal SnO2 nanowires," Sensors Actuators, B Chem., vol. 293, no. May, pp. 129–135,2019.
- [27] E. Modaresinezhad and S. Darbari, "Realization of a room-temperature/self-powered humidity sensor, based on ZnO nanosheets," Sensors Actuators, B Chem., vol. 237, pp. 358–366, 2016.
- [28] S. Yu, H. Zhang, C. Chen, and C. Lin, "Investigation of humidity sensor based on Au modified ZnO nanosheets via hydrothermal method and first principle," Sensors Actuators, B Chem., vol. 287, no. February, pp. 526–534, 2019.
- [29] A. S. Ismail et al., "Fabrication of hierarchical Sn-doped ZnO nanorod arrays through sonicated sol-gel immersion for room temperature, resistive-type humidity sensor applications," Ceram. Int., vol. 42, no. 8, pp. 9785–9795, 2016.
- [30] S. Yu, H. Zhang, C. Chen, and C. Lin, "Investigation of humidity sensor based on Au modified ZnO nanosheets via hydrothermal method and first principle," Sensors Actuators, B Chem., vol. 287, no. February, pp. 526–534, 2019.
- [31] M. A. Dwiputra, F. Fadhila, C. Imawan, and V. Fauzia, "The enhanced performance of capacitive-type humidity sensors based on ZnO nanorods/WS2 nanosheets heterostructure," Sensors Actuators, B Chem., vol. 310, no. February, p. 127810, 2020.
- [32] A. R. Razeghizadeh, L. Zalaghi, I. Kazeminezhad, and V. Rafee, "Growth and optical properties investigation of pure and al-doped SnO2nanostructures by sol-gel method," Iran. J. Chem. Chem. Eng., vol. 36, no. 5, pp. 1–8, 2017.
- [33] C. S. Reddy, G. Murali, A. S. Reddy, S. Park, and I. In, "GO incorporated SnO2 nanotubes as fast response sensors for ethanol vapor in different atmospheres," J. Alloys Compd., vol. 813, p. 152251, 2020.
- [34] X. X. Fan, X. L. He, J. P. Li, X. G. Gao, and J. Jia, "Ethanol sensing properties of hierarchical SnO2 fibers fabricated with electrospun polyvinylpyrrolidone template," Vacuum, vol. 128, pp. 112–117, 2016.
- [35] J. Zhang, L. Li, J. Chen, N. He, K. Yu, and C. Liang, "Controllable SnO2/ZnO@PPy hollow nanotubes prepared by electrospinning technology used as anode for lithium ion battery," J.Phys. Chem. Solids, vol. 150, p. 109861, 2021.
- [36] X. H. Xu et al., "Ultra-sensitive glycol sensing performance with rapid-recovery based on heterostructured ZnO-SnO2 hollow nanotube," Mater. Lett., vol. 273, 2020.
- [37] P. Pascariu et al., "Microstructure, electrical and humidity sensor properties of electrospun NiO-SnO2 nanofibers," Sensors Actuators, B Chem., vol. 222, pp. 1024– 1031,2016.
- [38] W. Guo and Z. Wang, "Composite of ZnO spheres and functionalized SnO2 nanofibers with an enhanced ethanol gas sensing properties," Mater. Lett., vol. 169, pp. 246–249, 2016. 3
- [39] S. H. Yan et al., "Synthesis of SnO2-ZnO heterostructured nanofibers for enhanced ethanol gas-sensing performance," Sensors Actuators, B Chem., vol. 221, pp.88–95, 2015.
- [40] A. B. Rosli, S. S. Shariffudin, Z. Awang, and S. H. Herman, "Deposition temperature dependence of ZnO nanostructures growth using TCVD for EGFET pH sensor," Proc. 2017 IEEE Reg. Symp. Micro Nanoelectron. RSM 2017, pp. 175–178, 2017.

- [41] A. I. Hassan, A. J. Addie, and J. Admon, "Influence of precursor concentration on the optoelectronic properties of spray deposited SnO2/Si heterojunction," Mater. Res. Express, vol. 6, no. 9, 2019.
- [42] T. Line, "Day 1 day 1 1," vol. 1, no. x, pp. 1–17, 2018.
- [43] H. B. Ahmed and H. E. Emam, Overview for multimetallic nanostructures with biomedical, environmental and industrial applications, vol. 321. Elsevier B.V, 2021.
- [44] P. P. Ortega, C. C. Silva, M. A. Ramirez, G. Biasotto, C. R. Foschini, and A. Z. Simões, "Multifunctional environmental applications of ZnO nanostructures synthesized by the microwave-assisted hydrothermal technique," Appl. Surf. Sci., vol. 542, no. February 2020, 2021.
- [45] M. Morsy, M. Ibrahim, Z. Yuan, and F. Meng, "Graphene Foam Decorated with ZnO as a Humidity Sensor," IEEE Sens. J., vol. 20, no. 4, pp. 1721–1729, 2020.
- [46] H. Mahdhi, K. Djessas, and Z. Ben Ayadi, "Synthesis and characteristics of Ca-doped ZnO thin films by rf magnetron sputtering at low temperature," Mater. Lett., vol. 214, pp. 10– 14,2018.
- [47] M. Shaheera et al., "Characterization and device application of indium doped ZnO homojunction prepared by RF magnetron sputtering," Opt. Mater. (Amst)., vol. 101, no. October 2019, p. 109723, 2020.
- [48] J. Soudi, K. M. Sandeep, B. K. Sarojini, P. S. Patil, S. R. Maidur, and K. M.Balakrishna, 35 "Thermo-optic effects mediated self-focusing mechanism and optical power limiting studies of ZnO thin films deposited on ITO coated PET substrates by RF magnetron sputtering under continuous wave laser regime," Optik (Stuttg)., vol. 225, no. October, p. 165835, 2021.
- [49] G. Zheng et al., "Investigation of physical properties of F-and-Ga co-doped ZnO thin films grown by RF magnetron sputtering for perovskite solar cells applications," Mater. Sci. Semicond. Process., vol. 112, no. February, p. 105016, 2020.
- [50] M. R. Alfaro Cruz, O. Ceballos-Sanchez, E. Luévano-Hipólito, and L. M. Torres-Martínez, "ZnO thin films deposited by RF magnetron sputtering: Effects of the annealing and atmosphere conditions on the photocatalytic hydrogen production," Int. J. Hydrogen Energy, vol. 43, no.22, pp. 10301–10310, 2018.
- [51] G. Voicu et al., "Co doped ZnO thin films deposited by spin coating as antibacterial coating for metallic implants," Ceram. Int., vol. 46, no. 3, pp. 3904–3911, 2020.
- [52] S. Bai et al., "On the construction of hollow nanofibers of ZnO-SnO2 heterojunctions to 34 enhance the NO2 sensing properties," Sensors Actuators, B Chem., vol. 266, no. 2, pp. 692–702, 2018.
- [53] H. Guendouz, A. Bouaine, and N. Brihi, "Biphase effect on structural, optical, and electrical properties of Al-Sn codoped ZnO thin films deposited by sol-gel spin-coating technique," Optik (Stuttg)., vol. 158, pp. 1342–1348, 2018.