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Siasatan Kadar Perambatan Retak Lesu pada profil UIC 54 Dalam Aplikasi 

Landasan Berkelajuan Tinggi 

ABSTRAK 

Keselamatan roda dan landasan keretapi adalah merupakan kebimbangan yang besar bagi 

sektor Keretapi Tanah Melayu dan pengeluar rangkaian keretapi. Penggelekan sentuh 

lesu (RCF) adalah masalah yang semakin meningkat disebabkan oleh peningkatan 

operasi kereta api berkelajuan tinggi di Malaysia dan peningkatan kitaran pembebanan 

oleh putaran roda atas landasan. Retak biasa yang berasal daripada permukaan landasan 

keretapi disebut sebagai semakan turus manakala, retakan melintang membawa kepada 

kegagalan fungsi landasan keretapi disebabkan perambatan retak yang terlalu cepat pada 

landasan keretapi. Dalam kajian ini, analisis berangka pada tegasan-terikan tiga dimensi 

(3D) bagi roda kereta api berjaya dijalankan oleh ANSYS Workbench 14.5. Kajian ini 

lebih tertumpu kepada eksperimen, kekuatan hayat lesu dan kadar pertumbuhan retakan 

(FCG) daripada UIC 54 profil kereta api. Kekuatan hayat lesu dan kajian FCG telah 

diselaraskan dengan spesimen pukal (ASTM E-466-15) dan tegangan padat (CT) 

spesimen (ASTM E-647-15). Lekuk S-N telah diplotkan daripada 7 set data spesimen 

pukal untuk menilai kekuatan lesu hayat dengan kadar nisbah pemalar boleh ubah pada 

tegasan 0.1. Di samping itu, profil UIC 54 lesu hayat telah disahkan dengan keputusan 

simulasi menggunakan ANSYS Workbench 14.5. Kerja-kerja simulasi telah 

dilaksanakan dengan spesimen model pukal mengikut tahap tegasan kenaan eksperimen. 

Selain daripada itu, kajian FCG itu dijalankan dengan menggunakan CT spesimen dengan 

pembolehubah dalam nisbah tegasan sebanyak 0.1, 0.3 dan beban 16 kN dan 13 kN 

digunakan. Kadar pertumbuhan retak bahan untuk profil UIC 54 diperoleh dari hubungan 

C dan m Paris-Erdogan. Hasil tegasan von–Mises menunjukkan bahawa zon tumpuan 

tegasan maksimum telah dicapai pada tolok kereta api di setiap sudut penjuru melebihi 

had kekuatan alah (533 MPa).Tambahan pula, hasil tegasan plastik yang setara 

menunjukkan bahawa kebanyakan ubah bentuk plastik berlaku di sudut penjuru landasan. 

Pengukuran kekerasan keseluruhan untuk landasan yang digunakan memperolehi 37.9 % 

lebih besar daripada landasan yang tidak digunakan. Nilai kekerasan untuk P1 (landasan 

yang digunakan) menunjukkan bahawa sudut penjuru landasan terjejas oleh tegasan 

hubungan tinggi dan ricihan plastik. Hasil ujian kekuatan lesu untuk profil UIC 54 

ditunjukkan dalam trend dimana bilangan kitaran lesu adalah lebih kecil dengan amplitud 

tekanan tinggi. Melalui lekuk S-N, had ketahanan diperolehi untuk profil UIC 54. Di 

samping itu, had ketahanan telah disahkan daripada hasil simulasi kekuatan lesu. 

Daripada penemuan ini, rintangan pertumbuhan retak lesu adalah kurang untuk profil 

UIC 54, yang telah diperolehi dari nilai tinggi parameter pertumbuhan retak lesu m untuk 

spesimen 1 (m = 3.455), spesimen 2 (m = 3.270) dan spesimen 3 (m = 3.223). Analisis 

mesin imbasan elektron (SEM) untuk spesimen pukal dan spesimen tegangan padat telah 

dilakukan di permukaan patah. Daripada pemerhatian keputusan analisis ini, permukaan 

patah telah mengalami kegagalan retak lesu yang tinggi pada jangka hayat bagi profil 

UIC 54. Hasil eksperimen kekuatan hayat lesu akan menjadi signifikan bagi landasan 

keretapi untuk memilih profil kekuatan hayat lesu yang tinggi dan untuk mengira jangka 

hayat profil UIC 54. Nilai malar C dan m digunakan untuk mengira kadar pertumbuhan 

retak melintang untuk profil UIC 54 dan untuk mengelakkan kegagalan dan kerosakan 

landasan semasa beroperasi. Kajian FCG boleh dijalankan dengan beban muatan 

mampatan untuk menyiasat mod retak di rantau retak dengan nisbah tegasan, R = -1. 
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An Investigation of Fatigue Crack Growth Behavior of UIC 54 Profile in High 

Speed Railway Applications 

ABSTRACT 

The safety of wheels and rails is a greater concern for the Malaysian railways Keretapi 

Tanah Melayu and manufacturers of the railway network. The rolling contact fatigue 

(RCF) is a growing problem due to increase of the high speed train operation in Malaysia 

and increased of load cycle. The RCF is defined as a damage that occurred due to the 

change in the material microstructure which contributes to crack initiation followed by 

crack propagation under the influence of time-dependent. The typical cracks originating 

at the running surface is called as head check. The transverse cracks leading to the 

eventual fracture of the rail.  As well as the crack growth rate is higher, it caused the crack 

to propagate faster and initiate the sudden rail failure at any time. In this study, numerical 

analysis of stress–strain characteristics of three dimensional (3D) wheel-rail contact was 

successfully carried out by ANSYS Workbench 14.5. Apart from that, this study focuses 

on the fatigue strength and fatigue crack growth (FCG) of UIC 54 profile. The fatigue 

strength and FCG study were coordinated with the dog-bone specimen (ASTM E-466-

15) and compact tension (CT) specimen (ASTM E-647-15), respectively. The S-N curve 

was plotted from 7 data of the dog-bone specimens to evaluate fatigue strength with a 

constant stress ratio 0.1, and variable in applied stress levels. In addition, the rail profile 

of UIC 54 fatigue strength was validated with simulation result by ANSYS Workbench 

14.5. The simulation works were executed with dog-bone specimen model according to 

the experimental applied stress level. Meanwhile for FCG the study was conducted with 

the CT specimens with a variable in stress ratio of 0.1, 0.3 and applied loads of 16 kN 

and 13 kN. The material crack growth rate for UIC 54 profile is obtained from Paris–

Erdogan relationship C and m. The maximum von–Mises stress result for the wheel and 

rail contact was obtained higher at rail gauge corner region and it’s exceed the yield 

strength limit (533 MPa) of UIC 54 profile. Furthermore, the equivalent plastic stress 

result reveals that most of the plastic deformation occurs at the rail gauge corner region, 

on the contrary almost very small plastic deformation occurs at the wheel. The overall 

hardness measurement for used rail obtained was 37.9 % greater than unused rail. The 

hardness value for P1 (used rail) indicates that rail gauge corner region was affected by 

high contact stresses and plastic strains. The result of fatigue strength testing for UIC 54 

profile was shown as in the trend, i.e. at the smaller number of fatigue cycle with high 

stress amplitude. From the S–N curve results, the endurance limit was obtained for UIC 

54 profile. In addition, the endurance limit was validated from simulation results fatigue 

strength. From the finding, the fatigue crack growth resistance is poor for UIC 54 profile, 

characterized by a high value of crack growth rate parameter m for specimen 1 (m = 

3.455), specimen 2 (m = 3.270) and specimen 3 (m = 3.223), respectively. The scanning 

electron microscope (SEM) observation at the dog-bone specimen and CT specimen on 

fracture surface was conducted. The fatigue strength experimental result will be 

significant for Malaysian Railways for selecting the high fatigue strength profile and to 

calculate the lifespan of UIC 54 profile. The constant value of C and m used to calculate 

the transverse crack growth rate for UIC 54 profile and to prevent from the rail failure 

and breakdown during its service time. In advance of that, the FCG study can be conduct 

with compression loading stress to investigate on the mode of fracture at the crack region 

with stress ratio of, R = -1.
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 : INTRODUCTION 

1.1 Background of Study 

Today in Malaysia, the railway is one of the public transportation as it offers 

safety, comfort and speed. According to F.M.S.Railway (2017), “Keretapi Tanah 

Melayu” (KTM) was established 55 years ago and initially known as “Keretapi Tanah 

Melayu Berhad” (KTMB). In Malaysia, the high speed train is operational since year 

2010 as shown in Figure 1.1. On July 2015, the Electric Train Service (ETS) was started 

to operate from north Malaysia to Sentral Kuala Lumpur and by the year 2024 this 

services will be extended to east coast region of Malaysia.  

 

Figure 1.1: Malaysia ETS (KTM, 2017). 

On the other hand, the annual passenger statistics shows 56% increment from 

the year 2015 to 2016 for ETS as in Appendix A. Therefore, the railway tracks in 
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Malaysia has to be improved in safety and reliability to withstand the repeated cyclic 

loading. In addition, the wheel and rail are main components of railways system, for that 

the initial damages from wheel and rail contact have to be identified in order to take 

precaution on the Malaysia railway system. Smith (2009), reported that the fatigue failure 

causes in many components in different industries and until now the problem still exists 

in railways. Moreover, the increase in train performances and rail traffic necessitate the 

development of good damage tolerance material to support the KTM. The damage may 

occur due to the rolling contact fatigue (RCF) and is one of the main factor influencing 

to growth of fatigue problems in railways. The fatigue performance of the rails is affected 

by many factors, including service conditions, loading, mechanical properties, 

environment factors, and manufacturing processes as reported by Arslan et al. (2012). 

RCF is defined as a damage because of change in the material microstructure which 

contributes to crack initiation followed by crack propagation, under the influence of time-

dependent rolling and sliding contact loads. 

The RCF in rail is caused by the wheel–rail contact which leads to initiation of 

surface and subsurface cracks as stated Masoudi et al. (2016). Reis et al. (2014), 

investigated that the main reason of RCF occurs is due to the operation increased on high 

speed railways and increased number of loading cycle between wheel–rail contact region. 

In this present study, the RCF failure analysis was executed by using ANSYS finite 

element software. The common problem which identifies from the failure of wheel and 

rail such as side wear, fatigue crack, crushing, corrugation and etc. Apart from that, this 

investigations focuses on fatigue strength and fatigue crack growth (FCG) of Malaysia 

High speed train UIC 54 profile. 
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1.2 Problem Statement 

Damage accumulation due to fatigue, plastic deformation and wear, significantly 

reduces the life service of life in the railway system. In recent years, the increase in train 

speeds (high speed train) leads to larger wheel–rail contact forces. These failures may 

cause damages to rails, train suspensions and in rare cases may occur serious 

derailment/slip of the train. The fatigue problem of wheel–rail is often referred to as RCF, 

which is caused by repeated contact stress during the rolling motion. Furthermore, the 

RCF between the wheel and the rail is generated the contact stress in form of elastic or 

plastic at the material. The contact stresses can be superimposed by residual stresses, 

normal stresses due to bending of the axle or thermal stresses, resulting in a complex 

stress state at the tip of a growing crack. Depending on the resulting stress state and the 

railway material, the surface crack will propagate and may branch downwards toward the 

body of the rail, usually under combined mode I/II loading. If left untreated the crack 

length can become critical, endangering the structural integrity of the rail. Furthermore, 

RCF is defined as a damage that occurred due to the change in the material microstructure 

which contributes to crack initiation followed by crack propagation under the influence 

of time-dependent. Moreover, the rail profile appears small surface fatigue cracks due to 

large contact stress. The growth and connection of surface fatigue cracks would result in 

the material removed from rail surface and then this leads to serious damages of railway 

system. The typical cracks originating at the running surface is called as head check. The 

transverse cracks leading to the eventual fracture of the rail.  As well as the crack growth 

rate is higher, it caused the crack to propagate faster and initiate the sudden rail failure at 

any time. 
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1.3 Objective 

a) To analyse the damaged sample given by KTM on the effect of rolling contact 

fatigue (RCF) between wheel and rail contact region by using finite element 

analysis (FEA). 

b) To determine the fatigue strength of UIC 54 profile at the head region with dog-

bone specimen. 

c) To evaluate the fatigue crack growth rate (FCGR) of UIC 54 profile at web region 

with compact tension (CT) specimen. 

1.4 Scope of Study 

The scope of the study is to investigate the fatigue strength and fatigue crack 

growth of railway rail steel grade 900A International Union of Railways (UIC 54) profile. 

The UIC 54 profile has been used to manufacture the rail by Malaysian railway for several 

decades. The 3D finite elements analysis is performed between wheel and rail to analysis 

maximum stress field distribution at rail inside curve region. Apart from that, the hardness 

measurements testing on UIC 54 profile at used and unused rail profile head. 

Furthermore, the hardness testing is conduct according to ASTM E 92-16 Standards. The 

dog-bone specimen and CT specimen experimental setup and testing are conducted 

according to ASTM E 466-15 and ASTM E 647-15 Standard, respectively. The fatigue 

strength (S-N) curve is plotted using seven dog-bone specimens with variable stress 

amplitude and with constant stress ratio of 0.1. Besides that, FCGR investigation, (da/dN 

versus ΔK) testing is conducted with CT specimen on constant machine frequency of 20 
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Hz and variable in applied loads of 13 kN and 16 kN. The testing stress ratio, R for FCGR 

testing is set 0.1 and 0.3 to investigate the effect of stress ratio of UIC 54 profile. 

1.5 Thesis Organization 

The thesis is divided into five chapters. In general, the first chapter describes 

about the introduction, problem statement, objectives and scopes of study. The aim of 

this chapter to explain briefly about the importance of this research to the readers. 

Chapter 2 contains literature review which collected from others researcher with 

the same field of study. Furthermore, this chapter is also included with theories and 

background study about RCF, fatigue behavior of rail steel, rail damages, head check at 

rail inside curve and transverse crack at rail profile that have been taken into 

consideration.  

Chapter 3 is research methodology which explained the simulation and 

experimental process. Moreover, this chapter represents about details on material 

properties and methods to conduct this study. The simulation part was created based on 

damage sample and data given by KTM. Furthermore, the experimental testing and 

simulation analysis is conducted with the dog-bone specimen/model to determine the 

fatigue strength for UIC 54 rail profile. Meanwhile, the FCGR result was obtained from 

da/dN vs. ∆K data. 

Chapter 4 consist of results and discussion of the final results. In this chapter the 

final results obtained from simulation and experimental data were compiled and 
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discussed as well. The 3D finite element model is used to investigate the effect of RCF 

between wheel and rail head region. Apart from that, the data from fatigue testing 

machine (Instron 8800) are collected and recorded from S-N curve and FCGR results for 

rail profile UIC 54. 

Chapter 5 provides the conclusion for this research. In this chapter, the final 

conclusion of the study is discussed by referred to the simulation and experimental 

results. There is also discussion about the further works and recommendation that can be 

applied to this study. 
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 : LITERATURE REVIEW 

2.1 Introduction to Fatigue Crack Initiation 

According to Ringsberg et al. (2001), the life of a fatigue crack is divided into 3 

phases. Phase 1 is about the shear stress applied to the surface which was initiated the 

crack, phase II is the transient crack growth behavior and phase III is the subsequent 

tensile and shear driven crack growth. The engineering structure deterioration due to 

fatigue has been a major issue faced by engineers. Akeel et al. (2011) reported that the 

estimated fatigue failure is more than 70% in engineering structure and this leads 

researchers to investigate on crack propagation, crack path and stress intensity factor as 

shown in Figure 2.1. 

 

Figure 2.1: Derailments of Train in Malaysia (KTM BERHAD, 2017) 
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