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ABSTRACT 

In this paper, a production inventory model is proposed which considers products with limited 
life and a little amount of decay. In real life problem, there are many scenarios that happened in 
production inventory which were not taken into consideration by Shirajul Islam and Sharifuddin 
[19], who formulated a production inventory model and considered both the holding cost and 
the production rate to be constant. They assumed that the demand is a linear level dependent.  
Their paper has been modified and extended by considering the holding cost to be linearly 
dependent on time and the demand rate during production is assumed to be smaller than the 
demand rate after production. The proposed production inventory model is formulated using 
systems of differential equations including initial and boundary conditions and typical integral 
calculus were also used to analyze the inventory problems. These differential equations were 
solved to give the best cycle length of the model to minimize the inventory cost. A mathematical 
theorem and proof are presented to establish the convexity of the cost function. From the 
numerical examples giving to illustrate the application of the model, a Newton-Raphson method 
has been used to determine the optimal length of ordering cycle to be 0.54814, optimal cycle 
time=2.3014 (840days), optimal quantity=32.9675 and total optimal average inventory cost per 
unit time=18.253 and accompanied by sensitivity analysis to see the effects of the parameter 
changes. 

Keywords: Boundary and Initial Conditions, Linear Level Dependent Demand, Linear Holding 
Cost, Optimal Solution, Production Inventory. 

1 INTRODUCTION 

Recently, the attention of manufacturers and managers of production inventories have been drawn 
to the effects of deterioration of items in the business word since the inventories or goods that are 
manufactured undergoes decay with time. All products have limited life and market demand, and as 
a result the inventories continues to deplete and some, if not all deteriorate. This deterioration affects 
the inventories by reducing the quality and quantity of the goods produced which courses an increase 
on inventory cost.   When an item degenerates to a state that it’s no longer valuable or lost original 
purpose, then it is said that deterioration has occurred. Fashionable goods or items such as tomatoes, 
mangoes, bananas, etc degenerate easily during the storage period.  

~ -UNIVERSITI ~ MALAYSIA u fflAP PERLIS 

mailto:madakiamatamaalhamdu@gmail.com


A.A. Madaki and B. Sani / A Production Inventory Model with Constant Production Rate…. 

147 

2 LITERATURE REVIEW 

Managers of industries have developed some models of inventory production to save some real-life 
situations. This is done by developing or constructing good inventory models to consider the 
situation at hand depending on the nature of the demand in the market. The demands are not 
normally static but fluctuates from time to time. Based on the nature of the demand, managers of 
inventories decide how much items to manufacture and when to manufacture.  

Harris [1], developed an inventory model that presents the famous Economic Order Quantity (EOQ) 
formula for the first time. Whitin [2], considered fashionable goods for decaying items at the end of 
period of the storage. Ghare and Schrader [3], developed an (EOQ) inventory model with constant 
rate of deterioration. They pointed out in their research that the consumption of the deteriorating 
items was closely related to a negative exponential function of time. Covert and Philip [4], introduced 
an inventory model which considered some parameters of Weibull distribution to represent the 
distribution of the deterioration. The model was modified and extended by Philip [5], considering up 
to three-parameter Weibull distribution for deterioration. Shah and Jaiswal [6], developed and 
discoursed an order level inventory model for deteriorating items for constant rate. Aggarawa [7], 
studied the model of Shah and Jaiswal [6] by correcting the error in it to calculate the average 
inventory holding cost. The demand rate and the deterioration rate were constant in all the models, 
also, the replenishment rate was infinite and there was no shortage allowed in inventory. Dave and 
Patel [8], considered an inventory model for decaying items with time proportional demand, but the 
demand was taken to be stock dependent and having linear trend. Deb and Chaudhuri [9], studied a 
model with finite rate of production and a time proportional deterioration rate, following 
backlogging. Rafaat [10], further review the work of Deb and Chaudhuri [9] by taken into 
consideration details information that governed the modeling inventory for deteriorating items. 
Goswami and Chaudhuri [11] also, further extended the model to include the demand rate, 
production rate and deterioration rate to be all function of time. Jalan and Chaudhuri [12], developed 
an order model of inventory for degenerating items with no shortages. Teng et al [13], studied a 
model of degenerating items with shortages and they assumed that the demand fluctuates with time 
positively. Skouri and Papchristos [14], discussed a continuous review inventory model in which 
there is opportunity cost due to lost sales and replenishment cost due to the linear dependency on 
the lot size. Ouyang and Cheng [15], discoursed the inventory model for deteriorating items with 
exponential declining demand and partial backlogging. Chund and Wee [16], developed an integrated 
two stages production inventory deterioration model for the buyer and the supplier on the basis of 
stock dependent selling rate considering important items and in time multiple deliveries. Applying 
inventory replenishment policy, Cheng and Wang [17], discussed an inventory model for 
deteriorating items with trapezoidal type demand rate which is a piecewise linear function. In the 
paper, a class of inventory models was developed with time dependent deterioration rate. Kaliraman 
et al [18], discoursed an inventory model of economic production quantity (EPQ) for degenerating 
items where the deterioration rate was assumed to follow weilbuill distribution with two 
parameters. The rate of demand was stock dependent and shortages were not allowed.  Shirajul Islam 
and Sharifuddin [19], formulated an inventory model with constant production rate, linear level 
dependent demand with buffer stock to minimize inventory cost. In their model, they considered the 
demand to be the same during and after production with a small amount of constant decay.  Ali et al 
[20], developed model of an inventory for delay deteriorating items with price and stock depended 
on demand, fully backlogged shortage and under inflation. The demand function was assumed to be 
generally dependent on price and stock and when there was shortage then demand would depend 
only on price of the product. They considered price of the product to be dependent on different kinds 
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of fixed markup rate and the deterioration was assumed to be non-instantaneous. Shortages were 
not allowed and fully backlogged. Bashair and Lakdere [21], proposed an EOQ inventory model with 
backlogging and in the presence of delay deterioration. He argued that the time at which 
deterioration begins is greater than or equal to the time at which backlogging begins in the basic EOQ 
model and then the optimal policy was determine by the parameters of basic EOQ model. Swagatika 
et al. [22], contributed in the inventory scenarios of items with instantaneous deterioration. They 
developed and inventory models for both crisp and fuzzy single commodity with three rates of 
production where the demand rate was a function of both advertisement and selling price. 
Dharmendra et al. [23], discussed an inventory model for deterioration product for multi-product 
with partial backlogging to consider carbon emission cost under the influence of inflation. Jamil et al. 
[24], proposed a model of an inventory that considered stock dependent demand allowing few 
defective items in the model, little amount of decay with constant production rate to find out the total 
optimum inventory cost, time and ordering cycle. 

Motivated by Shirajul Islam and Sharifuddin [19], this paper an inventory model is presented with a 
linear level dependent demand. The demand during production is assumed to be smaller than the 
demand after production. There is a small amount of decay during and after production. Our main 
contribution in this paper is that by considering the holding cost to be linearly dependent on time i.e.

1 2h h t+ and the demand rate during production is different from the demand rate after production. 

3 ASSUMPTIONS 

The production rate  is always constant and greater than the demand rate. The rate of decay  is 

constant and small. Since the decay is small it is assumed that there is no deterioration cost as in 
Shirajul Islam and Sharifuddin [19]. The demand rate during production at any instant t is given by 

( )a bI t+ , where a  and b are constants and satisfying the condition that ( )a bI t  + . The demand 

rate after production is ( )c fI t+ and assumed to be greater than demand during production at any 

instant t  where f  and c are constants. Production starts with little items in the inventory as a safety 

stock.  The inventory level gets to its highest point at the end of production and after which it reduces 
to the level of the safety stock due to the effects of market demand and degeneration of the items. 
There are no shortages. 

4 NOTATIONS 

( )I t  = Stock level at any instance t  

1hI = Holding cost for un-decayed inventory from 10  to t  

2hI =Holding cost for un-decayed inventory from  1 1  Tt to  

1hD =Holding cost for deteriorated Inventory from 10  to t  

2hD =Holding cost for deteriorated Inventory from 1 1  Tt to  

1 ,Q Q are the sock levels at time  10,  and t=t t= respectively. Here Q is the safety stock. 
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dt =Very small portion of instance t  

oK =Set up cost 

1 2h h t+ =Linear holding cost which is time dependent 

( )ITC TC T= =Total average inventory cost per unit time. 

It =Time when inventory gets to the maximum level  

IT =Total cycle time  

*

1Q =Optimal order quantity 

*

It =Optimal time for a maximum inventory 

*

IT =Optimal Order Interval 

( )
*

1TC T =Optimal average inventory cost per unit time  

5 MODEL FORMULATION 

The main objective of any business institution is to maximize profit and minimize cost. As a result, all 
various decisions have to be taken using suitable models. In a production Inventory environment, the 
demand pattern and production plant dictate the decisions of how and which model to use. The 
proposed model may be changed to another depending on the situation. In this model, while 0t = , 
the production  begins from Q inventory and this continues for the whole production cycle. The 

inventory  continues at the rate of  ( ) ( )a bI t I t − − − at 10  t to t= .The  demand in market is 

( )a bI t+ and ( )I t is the deterioration of ( )I t inventory at an instance t . From the above 

information the differential equation of the situation can be formulated as bellow: 
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( ) ( ) ( ) I t dt I t a bI t It dt + − = − − −
 

( ) ( )
( ) ( )

0
lim
dt

I t dt I t
a bI t I t

dt
 

→

+ −
= − − −

 

( ) ( ) ( )
d

I t I t a bI t
dt

 + = − −
  

( ) ( )b ta
I t Ae

b





− +−
 = +

+
         (1) 

This is the differential equation that governed the system.  

Using initial /matching condition ( )I t Q= at 0t = yields 

a
A Q

b





−
 = −

+
          (2) 

( ) ( )b ta a
I t Q e

b b

 

 

− + − −
 = + − 

+ +          (3)

 

Using initial/matching condition i.e. at ( )1 1,t t I t Q= = taking up to the first degree of μ yields  

( ) 1

1

b ta a
Q Q e

b b

 

 

− + − −
= + − 

+ + 
        (4) 

( ) 1 11
a a

Q Q b t
b b

 


 

 − −
= + − − + 

+ + 
 

  1Q a Q Qb t = + − − −          (5) 

Using equation (3) and considering the total un decayed inventory in the period 10  t to t= and taking 

the second term of μ yields. 

( ) ( ) ( ) ( )1 1

1 1 2 1 2
0 0

t t b t

h

a a
I h h t I t dt h h t Q e dt

b b

 

 

− +  − −
= + = + + −  

+ +  
 
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2
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

   
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           
         

            

     
    
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( )( )
( )

( )( )
( )

1

2 1 2

2

1 1
b t b t

h t e h e

b b

 

 

− + − +
− −

−
− + +

  
 
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( ) ( ) ( )

( ) ( )

( )

2 2 32
1 1 1 1 2 12 1 2 1

1 1

3

2 1 2 1

2

2 2 2 2

2

h Q b t h a t h Q b th Qt Qh t
h Qt

b

h a t h a t

b
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

 



+ − +
= + − + − +

+

− −
+ −

+    (6) 

Now to calculate the holding cost for deteriorated items as follows: 

( ) ( ) ( ) ( )
1 1

1 1 2 1 2

0 0

t t

b t

h

a a
D h h t I t dt h h t Q e dt

b b

 
 

 

− +  − −
= + = + + −  

+ +  
 

 

( ) ( ) ( )2 2 32
1 1 1 1 2 12 1

1 1 1                             
2 2 2 2

h

h Q b t h a t h Q b th Qt
D h Qt

     


+ − +
= + − + −

 

( ) ( )

( )

3

2 1 2 12 1

2
    

2

h a t h a th Qt

b b

   

 

− −
+ + −

+ +
       (7) 

Also, the inventory changes or reduces on the other side at the rate of ( ) ( )c fI t I t+ +  at 1t t= to 1T  

as  production  stop after time 1t . The demand after production is assumed to be greater than the 

demand during production. The inventory reduces to the level of safety stock due to effects of 
degeneration and the market demands of the items. The same procedure is applied also.  

( ) ( )  ( )I t dt It c fI t dt I t dt+ = + − − −
  

( ) ( ) ( ) 

( )
( ) ( ) 

0
lim
dt

I t dt It c fI t I t dt

t dt It
c fI t I t

dt




→

+ − = − − −

+ −
= − − −

 

( ) ( )f tc
I t Be

f





− +−
= +

+
         (8) 

Which is the differential equation that governed the system. 
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Using initial/matching condition when ( )1,t T I t Q= =  yields 

( ) ( )( )1f T tc c
I t Q e

f f



 

+ − −
= + + 

+ + 
        (9) 

Using initial /matching condition ( ) 1I t Q=  When 1t t= , considering the first term of μ to obtain the 

equations bellow. 

( )( )1 1

1

f T tc c
Q Q e

f f



 

+ − −
= + + 

+ +           

( ) ( )1 1Q c Q f T t= + + + −          (10) 

Now using Equation (9) to get the holding cost for undecayed inventory during 1t t= to 1T  as  
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h
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c c
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 
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2
h
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f f f  
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( )
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Multiply equation (11) by μ above to get the holding cost for deteriorated items during the period 

1 1 to t T as below 

( ) ( ) ( ) ( )( )

( ) ( ) ( )

( )
( )

1 1

1

1 1

2 1 2 1 2

1 1 1 1 1 1 1 1 1

2 2
2 1 12 21 1
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2
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h
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c c
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f f




 
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 We equate equations (5) and (10) to get the following equations:  

  ( ) ( )1 1 1Q a Q Qb t Q c Q f T t  + − − − = + + + −
 

( ) 
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1

1
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


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         (13) 

Now let 

( )

( )

c Q f
V

c a Q b f





+ +
=

− + − + +
          (14) 

1 1t VT =            (15) 

The total average cost per unit time is given as 

( ) 1 1 2 2

1

1

o h h h hK I D I D
TC T

T

+ + + +
=         (16) 

By substituting equations (6), (7), (11), (12), and (15) in equation (16) yields 
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By substituting 1 1t VT= so that the last equation becomes  
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The main objective is to find the value of 1T  which gives the minimum variable cost per unit time. The 

necessary and sufficient condition to minimize ( )1TC T  are respectively:  
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Now, differentiate equation 17 with respect to 1T  as follows: 
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This is now equated to zero so as to obtain the T1 which reduces the cost function. 
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Theorem 5.1: If ( ) ( )Q b a +  − then the cost function is convex.  

Proof: From equation (18), we take the second derivative as follows: 

( )
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1 3 3

2 22 3

1 1

2
1 1o

d TC T K
h Q b V h a V

dT T
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Therefore, 
( )2

1

2

1

0
d TC T

dT
  provided ( )( ) ( )( )3 3

2 21 1h Q b V h a V   + +  − +  

( ) ( )Q b a  +  −
 

Therefore, equation (17) shows that the cost function is convex in T1, then there is optimality inT1 

provided ( ) ( )Q b a +  − is satisfied. 

6 MODEL DEMONSTRATION 

A numerical illustration is provided to demonstrate the developed model. The values of various 
parameters are as follows: Ko= N100 Set up cost, λ = 50, Q = 10, h1 = 3, h2 = 2, b = 0.4, f = 0.8, μ = 0.01, 
a = 4 and c = 5. Note that the values of the parameters satisfy theorem 1. Now we substitute the above 
values of parameters into equations (18) and (19) to compute for T1 using Newton-Raphson method 
the solution T1* obtained from equations (18) and (19) is now put into equations (5), (15) and (17) 
to obtain the optimal solution as Q1* = 32.9675, t1* = 0.54814, TC(T1) * = N18.45253 and T1* = 
2.3014(840days). 

7 EFFECTS OF THE PARAMETER ON THE MODEL 

We carefully examine the effects of each parameter Ko, λ, Q, h1, h2, b, f, μ, a and c on the optimal length 
of ordering cycle tl*, optimal cycle time T1*, optimal quantity Q1* and the total average inventory cost 
TC(T1) *. The sensitivity analysis is carried out by changing each of the parameters by 50%, 25%, 
10%, 5%, -5%, -10%, -25%, -50% taking one parameter at a time and leaving other parameters 
unchanged.  



A.A. Madaki and B. Sani / A Production Inventory Model with Constant Production Rate…. 

157 

Table 1: The effects of the parameter changes on the model demonstration 1 to see some changes on the 
variables of T1*, t1*, Q1* and TC(T1)* 

Parameter % Change 
in 

Parameter 

T1*      tl*     Q1*   TC(T1)* 

Ko 50% 2.7808(1016 days) 0.66234 37.7521 38.1275 
25% 2.5534 (933 days) 0.60820 35.4832 28.75036 
10% 2.4082 (880 days) 0.57361 34.0343 22.70157 
5% 2.3562 (861 days) 0.56122 33.5143 20.6011 
0% 2.3014 (840 days) 0.54814 32.9675 18.45253 
-5% 2.24915 (821 days) 0.535746 32.44776 16.25375 
-10% 2.19182 (801 days) 0.522695 31.8742 14.0011 
-25% 2.011369 (735 days) 0.479626 30.0695 6.859817 
-50% 1.66032 (607 days) 0.3954 26.5693 -6.75602 

 50% 2.2219(812days) 0.36388 34.34105 13.80372 
25% 2.260274(825days) 0.438661 33.86314 15.55688 
10% 2.28491(835days) 0.49894 33.39720 17.099 
5% 2.2932(838days) 0.52245 33.1964 17.73786 
0% 2.3014 (840 days) 0.54814 32.9675 18.45253 
-5% 2.3123(845days) 0.577605 32.7334 19.2632 
-10% 2.3205(848days) 0.608701 32.4353 20.18536 
-25% 2.3452(857days) 0.7229 31.2536 23.87677 
-50% 2.3644(864days) 1.03243 27.4485 36.16761 

Q 
 

50% 1.99726(729days) 0.60093 38.947006 25.1871 
25% 2.1315(779days) 0.57572 36.0321 21.59405 
10% 2.22704(815days) 0.55934 34.2043 19.66405 
5% 2.2658(827days) 0.55433 33.6134 19.05193 
0% 2.3014 (840 days) 0.54814 32.9675 18.45253 
-5% 2.3425(856days) 0.54272 32.3491 17.86424 
-10% 2.3863(872days) 0.53713 31.7263 17.28472 
-25% 2.5314(925days) 0.51925 29.7864 15.5741 
-50% 2.86301(1046days) 0.48873 26.48640 12.6101 
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Parameter % Change 
in 

Parameter 

T1
* tl

* Q1
*   TC(T1)* 

h1 50% 2.30411(841days) 0.548797 32.99459 33.56201 
25% 2.30411(841days) 0.548797 32.99459 26.00731 

10% 2.30411(841days) 0.548797 32.99459 21.47449 
5% 2.30411(841days) 0.54813 32.9674 19.96355 
0% 2.3014 (840 days) 0.54814 32.9675 18.45253 
-5% 2.3014(840days) 0.54814 32.9674 16.9421 
-10% 2.3014(840days) 0.54814 32.9674 15.4307 
-25% 2.3014(840days) 0.54814 32.9674 10.89791 
-50% 2.3014(840days) 0.54814 32.9674 3.343207 

h2 50% 1.9041(696days) 0.45352 29.0035 -11.223 
25% 2.073973(757days) 0.493983 30.6984 4.079186 
10% 2.2027(804days) 0.524700 31.9836 12.83317 
5% 2.24930(823days) 0.53579 32.4481 15.66662 
0% 2.3014(840days) 0.54814 32.9675 18.45253 
-5% 2.358904(862days) 0.561848 33.5413 21.18754 
-10% 2.41924(885days) 0.57624 34.1430 23.86777 
-25% 2.63293(962days) 0.62715 36.2761 31.52568 
-50% 3.17532(1160days) 0.75633 41.6891 42.55763 

a  50% 2.309589(844days) 0.57086 32.77734 19.09261 
25% 2.306849(843days) 0.55962 32.88864 18.76458 
10% 2.30411(841days) 0.552818 32.9423 18.5755 
5% 2.3014(840days) 0.55084 32.9580 18.51371 
0% 2.3014 (840 days) 0.54814 32.9675 18.45253 
-5% 2.3014(840days) 0.54625 32.99327 18.39197 
-10% 2.3014(840days) 0.54423 33.0191 18.33201 
-25% 2.3014(840days) 0.53841 33.0953 18.15552 
-50% 2.29589(838days) 0.52772 33.1642 17.87253 

b  50% 2.30411(841days) 0.56954 32.7238 84.30588 
25% 2.30411(841days) 0.55896 32.8614 61.05371 
10% 2.30411(841days) 0.552818 32.9420 38.94667 
5% 2.30411(841days) 0.55081 32.9415 29.42021 
0% 2.3014 (840 days) 0.54814 32.9675 18.45253 
-5% 2.3014(840days) 0.54622 32.99327 5.740142 
-10% 2.3014(840days) 0.54421 33.0191 -9.1059 
-25% 2.3014(840days) 0.53835 33.09548 -72.3034 
-50% 2.3014(840days) 0.52951 33.24721 -323.236 
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Parameter % Change 
in 

Parameter 

T1
*      tl

*     Q1
* TC(T1)* 

c   50% 2.243836(819days) 0.60883 35.50741 7.42149 
25% 2.2712(830days) 0.57940 34.2785 12.84602 
10% 2.290411(836days) 0.56135 33.5175 16.18791 
5% 2.2959(839days) 0.55481 33.2441 17.31666 
0% 2.3014 (840 days) 0.54814 32.9675 18.45253 
-5% 2.309589(843days) 0.54211 32.7132 19.59593 
-10% 2.3151(847days) 0.535227 32.4265 20.7472 
-25% 2.33798(853days) 0.515224 31.58788 24.24294 
-50% 2.3726(876days) 0.47987 30.07235 30.2165 

F 50% 2.2438(820days) 0.65031 37.24923 -9.3467 
25% 2.2849(834days) 0.60530 35.36234 2.699325 
10% 2.2986(840days) 0.57262 33.9923 11.54658 
5% 2.3014(840days) 0.56081 33.4985 14.87838 
0% 2.3014 (840 days) 0.54814 32.9675 18.45253 
-5% 2.3014(840days) 0.53538 32.42978 22.30974 
-10% 2.2986(840days) 0.521623 31.5570 26.50142 
-25% 2.27952(833days) 0.47795 30.00284 41.85644 
-50% 2.17532(794days) 0.38864 26.26346 87.4984 

µ 50% 2.29593(838days) 0.54892 32.9730 20.78036 
25% 2.2986(839days) 0.54859 32.96935 19.62411 
10% 2.3014(840days) 0.54863 32.9793 18.92301 
5% 2.3014(840days) 0.54845 32.97328 18.68807 
0% 2.3014 (840 days) 0.54814 32.9675 18.45253 
-5% 2.30411(841days) 0.54860 32.98856 18.21642 
-10% 2.30411(841days) 0.54848 32.98253 17.97961 
-25% 2.3041(841days) 0.547701 32.96417 17.26549 
-50% 2.3066(843days) 0.547400 32.9610 16.06238 
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8 DISCUSSION OF RESULTS 

From the results obtained in Table 1, it can be deduced as follows:  

The effects of the set up cost, K0, on the variables T1*, t1*, Q1*, and TC(T1)* is that all increase. This 
implies that increase in set up cost will result in the increase of the optimal time for maximum 
inventory t1*, optimal cycle time T1*, optimal production quantity Q1* and total average inventory 
cost per unit time TC(T1)*. This is clearly expected since excess stocking is encouraged as a result of 
high set up cost. The total average inventory cost per unit time TC(T1)* is therefore expected to 
increase due to increase in stocking cost. The variable T1*, t1* and Q1* all increase due to high set up 
cost as well as stock holding cost. 

When there is a change in the value of the production rate λ, the variables T1*, t1* and TC(T1)* reduces 
while Q1* increases. This is expected because high production rate leads to shorter cycle time T1* 
especially if the demand rate after production is more than that during production. This will in turn 
reduce TC(T1)*. Q1* increases since production rate increases. 

When the value of the safety stock Q increases, the variables T1* reduces while the t1*, Q1*, and 
TC(T1)* increase. This is because inventory produced takes shorter time to finish hence the optimal 
cycle T1*reduces. On the other hand, the optimal time for maximum inventory t1* and optimal 
quantity Q1* increase probably because Q is much. The total average inventory cost is increased due 
to increase in the holding cost for the safety stock. 

The effects of the constant part of the holding cost h1, the variables T1*, t1* and Q1* remain unchanged 
while TC(T1)* increases. This is because as the demand increases, the optimal average cost TC(T1)* 
increases. On the other hand, the parameter h1 does not affect optimal time for maximum inventory 
t1* and optimal quantity Q1* based on equations (13) and (5). They are not very sensitive to h1. 

The stock depended part of the holding cost h2 increases, the variables T1*, t1*, Q1*, and TC(T1)* all 
reduces. This is expected since if the stock dependent part of the holding cost is higher, the model 
will force a reduction in the value of the optimal stock Q1*. Therefore, T1*, t1* and Q1*will all reduce 
and this will in turn cause TC(T1)* to reduce.  

The parameter, a, of the constant part of the demand rate during production increases or changes, 
while the variables T1*, t1* and TC(T1)* increase while the value of Q1* reduces. This is expected since 
if a is higher, the demand rate is higher and this will increase the optimal cycle time T1*, the time for 
maximum inventory t1* as well as the average total cost per unit time TC(T1)*. Q1* reduces probably 
due to increase in t1*. 

When there is change in the value of stock dependent part of the demand during production, the 
variables T1*almost remains unchanged. t1* and TC(T1)* increase while the value of Q1* reduces. 
Increasing the value of the parameter b, increases the demand and this will in turn increase both T1* 
and the total average inventory cost per unit time. The model will then force a reduction of the 
optimal production quantity Q1*, to reduce stock holding cost. 

When there is a change in the value of the parameter c of the constant part of the demand after 
production, the decision variables T1* and TC(T1)* reduces while the values of t1*and Q1* increase. 
This is expected since if c increases the demand rate increases so Q1* and t1* increase. The high stock 
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will take less time to finish due to high demand and the total average inventory cost per unit time 
will reduce.  

The value of the parameter d, of the stock dependent demand rate after production changes, the 
variables t1*and Q1*increase, while the values of TC(T1)* reduces. This is expected since if d is higher, 
the demand rate is higher, and this will increase the optimal cycle time T1* though in our case T1* is 
unstable. The time for maximum inventory t1* as well as the optimal quantity Q1* also increase due 
to higher demand. Thus the model will seek to lower value of total average inventory cost per unit 
time TC(T1)*.  

The effects of the change of deterioration rate μ, on the decision variables is that T1* reduces while 
TC(T1)* and t1*increase but  Q1* is unstable. This is because deterioration forces the model to lower 
the value of T1*. Also due to deterioration, t1* will increase so as to make up for what is going to 
deteriorate. As for TC(T1)*, it increases due to increase in deterioration cost. 

9 CONCLUSION REMARKS 

This paper presents a mathematical model of inventory production with constant production rate 
and linear level dependent demand. The demand during production is assumed to be different from 
the demand after production even though they are both linear level dependent. There is little amount 
of constant decay during and after production. A mathematical theorem and proof are presented to 
show the convexity of the cost function. Also, Newton-Raphson method has been used to determine 
the optimal solutions of the developed cost minimization model and a numerical illustration is given 
to demonstrate the application of the developed model. The main objective of the proposed model is 
to get the optimal length of ordering cycle, optimal cycle time, optimal quantity and total optimal 
average of the inventory cost per unit time. This paper concludes with notations, assumptions, 
development of the model, numerical examples and sensitivity analysis.  
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