

SYNTHESIS AND CHARACTERIZATION OF HIGH DIELECTRIC CONSTANT MATERIAL BASED ON Er- DOPED BaTiO₃ FOR CAPACITOR APPLICATIONS

by

FATIN ADILA BINTI ISMAIL (1630312166)

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Electronic Engineering

School of Microelectronic Engineering UNIVERSITI MALAYSIA PERLIS

2018

UNIVERSITI MALAYSIA PERLIS

D	ECLARATION OF THESIS
Author's Full Name : FA	ATIN ADILA BINTI ISMAIL
Title : SY Di Do	YNTHESIS AND CHARACTERIZATION OF HIGH IELECTRIC CONSTANT MATERIAL BASED ON Er- OPED BaTiO ₃ FOR CAPACITOR APPLICATIONS
Date of Birth : 16	FEBRUARY 1992
Academic Session : 20	016/2017
I hereby declare that this thesis (UniMAP) and to be placed at	s becomes the property of Universiti Malaysia Perlis the library of UniMAP. This thesis is classified as:
CONFIDENTIAL	(Contains confidential information under the Official Secret Act 1997)*
RESTRICTED	(Contains restricted information as specified by the organization where research was done)*
✓ OPEN ACCESS	I agree that my thesis to be published as online open access (Full Text)
I, the author, give permission to research or academic exchange requested above)	to reproduce this thesis in whole or in part for the purpose of e only (except during the period of years, if so
isitemis	Certified by:
SIGNATURE	SIGNATURE OF SUPERVISOR
92021603606	4 DR. ROZANA AINA MAULAT OSMAN
(NEW IC NO. /PASSPO	RT NO.) NAME OF SUPERVISOR

NOTES : * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with the period and reasons for confidentiality or restriction. Replace thesis with dissertation (MSc by Mixed Mode) or with report (coursework)

ACKNOWLEDGMENT

In the name of Allah, Most Gracious, Most Merciful.

othisiter

First and foremost I want to thank my advisor Dr. Rozana Aina Maulat Osman for her teaching, guidance, encouragement and patience during my graduate studies in University Malaysia Perlis. Further, it has been an honor to work with her as a MSc. student and her enthusiasm for research was courageous and motivated me even at the hardship of the MSc. pursuit.

I also want to thank Dr. Sobri Idris for his support and valuable suggestions through this study. Further, I take this opportunity to thank him for his commitment for my excellence. My gratitude is also extended to lecturers and technicians of School of Microelectronic Engineering and School of Materials Engineering, UniMAP, for helping me analyzing the samples and the input given.

The members of my group, Qing, Masku, Dhaniah, Najwa, Farah, Hamidah, Amirah, Fashren, Yuk Ming and Soo Soo Peng are also kindly acknowledged. Their contribution to my research as well as my personal life was immense.

This work is supported by the Ministry of High Education (MOHE) under Fundamental Research Grants Scheme (FRGS), which support is gratefully acknowledged. Besides, the scholarship from MyMaster also gives a big help.

Finally, I would also give my special appreciation to my family members for their unconditional love and support my entire life and brought me up to this level. Last but not least, thank you to all the people around me who involved in this research neither directly nor indirectly.

TABLE OF CONTENTS

DEC	CLARATION OF THESIS	ii
ACK	KNOWLEDGMENT	iii
ТАВ	BLE OF CONTENTS	iv
LIST	Г OF TABLES	viii
LIST	r of figures	X
LIST	Γ OF ABBREVIATIONS	xiv
LIST	r of symbols	xvi
ABS	TRAK	xix
ABS	TRACT	XX
CHA	APTER 1 : INTRODUCTION	1
1.1	Background	1
1.2	Basic structure of capacitor	2
1.3	Properties of dielectric material in capacitor	3
1.4	Problem statement	6
1.5	Objectives	8
1.6	Scope of study	8
1.7	Thesis structure	9
CHA	APTER 2 : LITERATURE REVIEW	11
2.1	Introduction	11
2.2	Dielectric material	12
	2.2.1 Dielectric constant	13
	2.2.2 Dielectric loss	14

	2.2.3	Dielectric strength	14
2.3	Histor	ry of Barium titanate (BaTiO ₃)	15
	2.3.1	Perovskite structure of BaTiO ₃	15
	2.3.2	Phase transition of BaTiO ₃	18
	2.3.3	Electrical properties of BaTiO ₃	19
		2.3.3.1 Dielectric	19
		2.3.3.2 Ferroelectricity	23
		2.3.3.3 Piezoelectricity	24
		2.3.3.4 Pyroelectricity	24
	2.3.4	Microstructural properties of BaTiO ₃	25
2.4	Doped	l-BaTiO ₃	26
2.5	Er-doj	ped BaTiO ₃	28
CHA	PTER 3	3 : METHODOLOGY	31
3.1	Introd	uction	31
3.2	Mater	ial used for synthesis of BaTiO ₃ and Er-doped BaTiO ₃	31
3.3	Synthe	esis of BaTiO ₃ and Er-doped BaTiO ₃	32
3.4	Chara	cterization of BaTiO ₃ and Er-doped BaTiO ₃	35
	3.4.1	X-ray Diffraction (XRD)	35
(3.4.2	Rietveld refinement analysis	39
	3.4.3	Impedance analyser	41
	3.4.4	Scanning Electron Microscopy (SEM)	43
CHA	PTER 4	: RESULT & DISCUSSION	45
4.1	Introd	uction	45
4.2	Struct	ural analysis	45
	4.2.1	XRD analysis of BaTiO ₃	45

	4.2.2	XRD analysis of composition $Ba_{1-x}Er_xTiO_3$ for ($0 \le x \le 0.05$)	47
	4.2.3	Lattice parameters of composition $Ba_{1-x}Er_xTiO_3$ for ($0 \le x \le 0.05$)	49
	4.2.4	Crystallite size of composition $Ba_{1-x}Er_xTiO_3$ for ($0 \le x \le 0.01$)	52
4.3	Rietve	eld refinement analysis	53
	4.3.1	Initial structure model for BaTiO ₃	53
	4.3.2	Rietveld refinement of Ba _{1-x} Er _x TiO ₃ for x=0.0025, 0.005, 0.0075	
		and 0.01	68
		4.3.2.1 Assumption if Er located at A-site	70
		4.3.2.2 Assumption if Er located at B-site	79
		4.3.2.3 Summary of Er-doped $BaTiO_3$ in $Ba_{1-x}Er_xTiO_3$	
		for (0≤x≤0.01)	88
4.4	Micro	ostructural analysis of $Ba_{1-x}Er_xTiO_3$ for ($0 \le x \le 0.01$)	91
4.5	Electr	rical analysis	94
	4.5.1	Electrical properties for BaTiO ₃	94
	4.5.2	Electrical properties of $Ba_{1-x}Er_xTiO_3$ for ($0 \le x \le 0.01$)	101
		4.5.2.1 Dielectric constant	101
		4.5.2.2 Curie-Weiss plot	105
		4.5.2.3 Capacitance	107
	©`	4.5.2.4 Dielectric loss	111
		4.5.2.5 Conductivity	113
	4.5.3	Capacitance-Voltage characteristic of $Ba_{1-x}Er_xTiO_3$ for	
		(0≤x≤0.01)	116
CH	APTER 5	5 : CONCLUSION	118
5.1	Introd	luction	118
5.2	Recor	nmendation for future work	120

5.3	Commercialisation potential	120
REFE	CRENCES	121
APPE	ENDIX A	126
APPENDIX B		127
LIST	OF PUBLICATIONS	131

othis item is protected by original copyright

LIST OF TABLES

NO.		PAGE
Table 2.1:	Examples of dielectric materials with their dielectric constant (Wilk, Wallace, & Anthony, 2001; Ye, 2008)	13
Table 2.2:	Tolerance factor value with respective crystal structure (Harry & Yakel, 1965).	17
Table 2.3:	Capacitance value and their possible phenomena (Sinclair, 1995).	23
Table 2.4:	Conductivity value for related class of materials (A. R. West, 2014).	23
Table 2.5:	Dielectric constant of rare earth-doped BaTiO ₃ at T ₆	27
Table 3.1:	List of materials used in synthesis of $BaTiO_3$ and Er-doped $BaTiO_3$	31
Table 3.2:	Drying temperature of raw materials	32
Table 3.3:	Example of intial structure model of BaTiO ₃	39
Table 4.1:	Lattice parameters and unit cell volume for $Ba_{1-x}Er_xTiO_3$ for $(0 \le x \le 0.05)$.	50
Table 4.2:	Crystallite size for composition $Ba_{1-x}Er_xTiO_3$ ($0 \le x \le 0.01$).	53
Table 4.3:	Starting structural model for BaTiO ₃ (Model A).	55
Table 4.4:	Starting structural model for BaTiO ₃ (Model B).	55
Table 4.5:	Starting structural model for BaTiO ₃ (Model C).	55
Table 4.6:	Starting structural model for BaTiO ₃ (Model D).	56
Table 4.7:	Starting structural model for BaTiO ₃ (Model E).	56
Table 4.8:	Structural data for BaTiO ₃ powder synthesised at 1400°C for 12 hours obtained from Rietveld refinement by using Model A.	59
Table 4.9:	Structural data for BaTiO ₃ powder synthesised at 1400°C for 12 hours obtained from Rietveld refinement by using Model B.	60
Table 4.10:	Structural data for $BaTiO_3$ powder synthesised at 1400°C for 12 hours obtained from Rietveld refinement by using Model C.	61
Table 4.11:	Structural data for $BaTiO_3$ powder synthesised at 1400°C for 12 hours obtained from Rietveld refinement by using Model D.	62

Table 4.12:	Structural data for $BaTiO_3$ powder synthesised at 1400°C for 12 hours obtained from Rietveld refinement by using Model E.	63
Table 4.13:	Refined structural data for Model A, Model C and Model D.	68
Table 4.14:	Structural data for Er-doped $BaTiO_3$ powder synthesised at 1400°C obtained from Rietveld refinement (x=0.0025).	70
Table 4.15:	Structural data for Er-doped $BaTiO_3$ powder synthesised at 1400°C obtained from Rietveld refinement (x=0.005).	71
Table 4.16:	Structural data for Er-doped BaTiO3 powder synthesised at 1400° C obtained from Rietveld refinement (x=0.0075).	72
Table 4.17:	Structural data for Er-doped $BaTiO_3$ powder synthesised at 1400°C obtained from Rietveld refinement (x=0.01).	73
Table 4.18:	Structural data for Er-doped $BaTiO_3$ powder synthesised at 1400°C obtained from Rietveld refinement (x=0.0025).	79
Table 4.19:	Structural data for Er-doped $BaTiO_3$ powder synthesised at 1400°C obtained from Rietveld refinement (x=0.005).	80
Table 4.20:	Structural data for Er-doped BaTiO3 powder synthesised at 1400° C obtained from Rietveld refinement (x=0.0075).	81
Table 4.21:	Structural data for Er-doped $BaTiO_3$ powder synthesised at 1400°C obtained from Rietveld refinement (x=0.01).	82
Table 4.22:	Refined structural data for the possibility of Er -doped $BaTiO_3$ were located at A-site.	89
Table 4.23:	Refined structural data for the possibility of Er-doped $BaTiO_3$ were located at B-site.	90
OT Y	15	

LIST OF FIGURES

NO.		PAGE
Figure 1.1:	A typical capacitor and its basic structure (Callister, 2001; Tournier, 2014).	2
Figure 1.2:	Parallel plate capacitor (a) without and (b) with dielectric material between the plates.	3
Figure 1.3:	Production of multilayer capacitor in ten years (Kishi et al., 2003).	6
Figure 2.1:	The ideal ABO ₃ perovskite structure (Pradhan & Roy, 2013).	16
Figure 2.2:	The structure changes of BaTiO ₃ (Heywang, W., Lubitz, K. and Wersing, 2009).	18
Figure 2.3:	Temperature dependence of permittivity for BaTiO ₃ (A. R. West, 2014).	20
Figure 2.4:	Curie-Weiss plot (A. R. West, 2014).	21
Figure 2.5:	Variation of dielectric constant vs frequency (A. J. Moulson & Herbert, 2003).	22
Figure 2.6:	Room temperature X-ray diffraction patterns of (a) $BaTiO_3$ and (b) $Ba_{0.99}Er_{0.01}TiO_3$ (Leyet et al., 2012).	29
Figure 2.7:	Temperature dependence of the real and imaginary parts of the dielectric constant of (a) $BaTiO_3$ and (b) $Ba_{0.99}Er_{0.01}TiO_3$ ceramics measured at 1 MHz (Leyet et al., 2012)	30
Figure 2.8:	Frequency dependence of the AC conductivity of $Ba_{0.99}Er_{0.01}TiO_3$ ceramic samples measured at different temperatures (Leyet et al., 2012).	30
Figure 3.1:	Flowchart of process involve in synthesized and characterized of $BaTiO_3$ and $Ba_{1-x}Er_xTiO_3$	34
Figure 3.2:	Example of PDF of a XRD pattern (PDF 00-005-0626)	36
Figure 3.3:	Magnified image of data in PDF card (PDF 00-005-0626)	36
Figure 3.4:	(a) Equipment used in preparation of samples for XRD; (b) sample preparation for XRD analysis; (c) flat surface sample prepared for XRD and (d) XRD process of the sample	37
Figure 3.5:	Conventional jig for impedance measurement.	43
Figure 4.1:	XRD pattern of BaTiO ₃ compared with PDF card [00-005-0626].	46

Figure 4.2:	XRD pattern of $Ba_{1-x}Er_xTiO_3$ for $(0 \le x \le 0.05)$.	48
Figure 4.3:	XRD pattern of $Ba_{1-x}Er_xTiO_3$ at x=0.02 and x=0.05 compared with PDF card [00-054-0181] of $Er_2Ti_2O_7$ impurities	49
Figure 4.4:	Lattice <i>a</i> for Ba _{1-x} Er _x TiO ₃ for $(0 \le x \le 0.01)$ as a function of <i>x</i> .	51
Figure 4.5:	Lattice <i>c</i> for Ba _{1-x} Er _x TiO ₃ for $(0 \le x \le 0.01)$ as a function of <i>x</i> .	51
Figure 4.6:	Unit cell volume for $Ba_{1-x}Er_xTiO_3$ for $(0 \le x \le 0.01)$ as a function of <i>x</i> .	52
Figure 4.7:	Rietveld plots for undoped BaTiO ₃ (Model A).	64
Figure 4.8:	Rietveld plots for undoped BaTiO3 (Model B).	65
Figure 4.9:	Rietveld plots for undoped BaTiO ₃ (Model C).	65
Figure 4.10:	Rietveld plots for undoped BaTiO ₃ (Model D).	66
Figure 4.11:	Rietveld plots for undoped BaTiO ₃ (Model E).	66
Figure 4.12:	Comparison of R-values and χ^2 for all models.	67
Figure 4.13:	Rietveld refinement of $Ba_{1-x}Er_xTiO_3$ for x=0.0025.	74
Figure 4.14:	Rietveld refinement of $Ba_{1x}Er_xTiO_3$ for x=0.005.	75
Figure 4.15:	Rietveld refinement of $Ba_{1-x}Er_xTiO_3$ for x=0.0075	75
Figure 4.16:	Rietveld refinement of $Ba_{1-x}Er_xTiO_3$ for x=0.01.	76
Figure 4.17:	The goodness-of-fit, χ^2 and R-factors vs x in Ba _{1-x} Er _x TiO ₃ .	76
Figure 4.18:	Lattice <i>a</i> for Ba _{1-x} Er _x TiO ₃ for $(0 \le x \le 0.01)$ as a function of <i>x</i> .	77
Figure 4.19:	Lattice <i>c</i> for Ba _{1-x} Er _x TiO ₃ for $(0 \le x \le 0.01)$ as a function of <i>x</i> .	78
Figure 4.20:	Unit cell volume for $Ba_{1-x}Er_xTiO_3$ for $(0 \le x \le 0.01)$ as a function of <i>x</i> .	78
Figure 4.21:	Rietveld refinement of $Ba_{1-x}Er_xTiO_3$ for x=0.0025.	83
Figure 4.22:	Rietveld refinement of $Ba_{1-x}Er_xTiO_3$ for x=0.005.	84
Figure 4.23:	Rietveld refinement of $Ba_{1-x}Er_xTiO_3$ for x=0.0075.	84
Figure 4.24:	Rietveld refinement of $Ba_{1-x}Er_xTiO_3$ for x=0.01.	85
Figure 4.25:	The goodness-of-fit, χ^2 and R-factors vs x in Ba _{1-x} Er _x TiO ₃ .	85
Figure 4.26:	Lattice <i>a</i> for Ba _{1-x} Er _x TiO ₃ for ($0 \le x \le 0.01$) as a function of <i>x</i> .	86

Figure 4.27:	Lattice <i>c</i> for Ba _{1-x} Er _x TiO ₃ for $(0 \le x \le 0.01)$ as a function of <i>x</i> .	87
Figure 4.28:	Unit cell volume for $Ba_{1-x}Er_xTiO_3$ for $(0 \le x \le 0.01)$ as a function of <i>x</i> .	87
Figure 4.29:	Scanning electron micrographs of sintered $Ba_{1-x}Er_xTiO_3$ for $(0 \le x \le 0.01)$.	92
Figure 4.30:	Grain size distribution of sintered $Ba_{1-x}Er_xTiO_3$ for ($0 \le x \le 0.01$).	93
Figure 4.31:	Dielectric constant of $BaTiO_3$ as a function of temperatures at different frequencies.	95
Figure 4.32:	Curie-Weiss plot of $BaTiO_3$ at different frequency as a function of temperatures.	96
Figure 4.33:	Capacitance of $BaTiO_3$ at different temperature as a function of frequency.	97
Figure 4.34:	Capacitance of BaTiO ₃ at 30°C, 110° C (T _c) and 200°C as a function of frequency.	98
Figure 4.35:	Dielectric loss (Tan δ) of BaTiO ₃ at different temperature as a function of frequency.	99
Figure 4.36:	Conductivity of $BaTiO_3$ at different temperature as a function of frequency.	100
Figure 4.37:	Conductivity of BaTiO ₃ at 30°C, 110°C (T _C) and 200°C as a function of frequency.	101
Figure 4.38:	Dielectric constant of $Ba_{1-x}Er_xTiO_3$ for $(0 \le x \le 0.01)$ as a function of temperature at 1 kHz.	103
Figure 4.39:	Dielectric constant of $Ba_{1-x}Er_xTiO_3$ for $(0 \le x \le 0.01)$ as a function of temperature at 10 kHz.	104
Figure 4,40:	Dielectric constant of $Ba_{1-x}Er_xTiO_3$ for $(0 \le x \le 0.01)$ as a function of temperature at 100 kHz.	104
Figure 4.41:	Curie-Weiss plot of $Ba_{0.9975}Er_{0.0025}TiO_3$ at different frequency as a function of temperature.	105
Figure 4.42:	Curie-Weiss plot of $Ba_{0.995}Er_{0.005}TiO_3$ at different frequency as a function of temperature.	106
Figure 4.43:	Curie-Weiss plot of $Ba_{0.9925}Er_{0.0075}TiO_3$ at different frequency as a function of temperature.	106
Figure 4.44:	Curie-Weiss plot of $Ba_{0.99}Er_{0.01}TiO_3$ at different frequency as a function of temperature.	107

Figure 4.45:	Capacitance of $Ba_{0.9975}Er_{0.0025}TiO_3$ at 30°C, 120°C (T _C) and 200°C as a function of frequency.	109
Figure 4.46:	Capacitance of $Ba_{0.995}Er_{0.005}TiO_3$ at 30°C, 120°C (T _C) and 200°C as a function of frequency.	109
Figure 4.47:	Capacitance of $Ba_{0.9925}Er_{0.0075}TiO_3$ at 30°C, 120°C (T _C) and 200°C as a function of frequency.	110
Figure 4.48:	Capacitance of $Ba_{0.99}Er_{0.01}TiO_3$ at 30°C, 120°C (T _C) and 200°C as a function of frequency.	110
Figure 4.49:	Dielectric loss (Tan δ) of Ba _{1-x} Er _x TiO ₃ for ($0 \le x \le 0.01$) as a function of temperature at 1kHz.	111
Figure 4.50:	Dielectric loss (Tan δ) of Ba _{1-x} Er _x TiO ₃ for ($0 \le x \le 0.01$) as a function of temperature at 10kHz.	112
Figure 4.51:	Dielectric loss (Tan δ) of Ba _{1-x} Er _x TiO ₃ for ($0 \le x \le 0.01$) as a function of temperature at 100kHz.	112
Figure 4.52:	Conductivity of $Ba_{0.9975}Er_{0.0025}TiO_3$ at 30°C, 120°C (T _C) and 200°C as a function of frequency.	114
Figure 4.53:	Conductivity of $Ba_{0.995}Er_{0.005}TiO_3$ at 30°C, 120°C (T _C) and 200°C as a function of frequency.	114
Figure 4.54:	Conductivity of $Ba_{0.9925}Er_{0.0075}TiO_3$ at 30°C, 120°C (T _c) and 200°C as a function of frequency.	115
Figure 4.55:	Conductivity of $Ba_{0.99}Er_{0.01}TiO_3$ at 30°C, 120°C (T _C) and 200°C as a function of frequency.	115
Figure 4.56:	Capacitance-Voltage characteristic of $Ba_{1-x}Er_xTiO_3$ ($0 \le x \le 0.01$) at 100kHz.	117
O	*	

LIST OF ABBREVIATIONS

BaCO ₃	Barium carbonate
BaTiO ₃	Barium titanate
CaTiO ₃	Calcium titanate
Ce	Cerium
Dy	Dysprosium
Er	Erbium
Er ₂ O ₃	Erbium oxide
FWHM	Full width half maximum
Gd	Gadolinium
H ₂ O	Water
HCL	Hydrochloric acid
HF	Hydrofluoric acid
Но	Holmium
Hz	Hertz 6
ICDD	International Centre of Diffraction Data
ICSD	International Crystal Structure Database
kHz	Kilohertz
KNbO ₃	Potassium niobate
La	Lanthanum
Lu	Lutetium
MgTiO ₃	Magnesium titanate
MHz	Megahertz
MLCC	Multilayer ceramic capacitor

Nd	Neodymium
PbTiO ₃	Lead titanate
PDF	Powder diffraction file
PLZT	Lead lanthanum zirconate titanate
Pm	Promethium
Pr	Praseodymium
PTC	Positive Temperature Coefficient
PZT	Lead zirconate titanate
SEM	Scanning Electron Microscope
SiO ₂	Silicon dioxide
Sm	Samarium
Eu	Europium
Tb	Terbium
Ti	Titanium
TiO ₂	Titanium dioxide
TiO ₂	Titanium dioxide
Tm •	Thulium
XRD	X-Ray Diffraction
Y O	Yttrium
Yb	Ytterbium

LIST OF SYMBOLS

C	Canacitance
C	Capacitance

Charge Q

Applied voltage V

Dielectric constant of free space εο

F Farad

m Meter

А Area

Thickness of plates t

Dielectric constant k

cted by original copyright Relative permittivity εr

 $Tan \ \delta$ Dielectric loss

Pm3m Space group

 Ba^{2+}

t

r_A

r_B

ro

 Ti^{4+} Titanium ion

Tolerance factor

Barium ion

Ionic radii of A

Ionic radii of B

2

Ionic radii of O

La³⁺ Lanthanum ion

 Nd^{3+} Neodymium ion

 Tm^{3+} Thulium ion

Lu³⁺ Lutetium

 Er^{3+} Erbium ion

Y^{3+}	Yttrium ion
T _c	Curie temperature
Pm-3m	Space group
P4mm	Space group
C2mm	Space group
Rm3	Space group
C _p	Parallel capacitance
σ	Conductivity
°C	Degree celcius
С	Curie constant
Т	Temperature of sample in Kelvin
θ	Curie Weiss temperature
cm	Centimeter
S	Siemens
μ	Micro K
Nd^{3+}	Nd 3+ ion
Dy ³⁺	Dy 3+ ion
Min	Minutes
20	2 Theta
o	Degree
n	Integer (n=1,2,)
λ	Lambda
d _{hkl}	Interplanar spacing
D	Crystallite size
K	Shape factor

- Peak width β
- Bragg's angle θ

Thermal parameter Uiso

- Å Armstrong
- Parallel resitance R_P
- Resistivity ρ

othis tern is protected by original copyright

Sintesis dan Pencirian Bahan Pemalar Dielektrik yang Tinggi Berdasarkan Er-doped BaTiO₃ untuk Aplikasi Kapasitor

ABSTRAK

Hala pengecilan dalam teknologi peranti pintar dan alat elektronik telah menjadikan bahan yang mempunyai pemalar dielektrik yang tinggi menjadi satu parameter yang penting untuk digunakan sebagai kapasitor bagi penyimpanan data dalam alatan elektronik. Dalam kajian ini, BaTiO₃ telah digunakan kerana ia dilaporkan mempunyai pemalar dielektrik yang tinggi (ε_r = 4000-10000) pada suhu Curie (T_C) dalam lingkungan 110°C. Tambahan pula, Erbium (Er) telah dilaporkan bahawa sekiranya Er digantikan (didopkan) ke dalam BaTiO₃, ia dapat meningkatkan sifat dielektrik BaTiO₃. Komposisi BaTiO₃ dan BaTiO₃ didopkan Er dalam kadar $(0 \le x \le 0.01)$ telah disediakan melalui kaedah sintesis keadaan pepejal. Pencirian komposisi-komposisi ini telah dilakukan dengan menggunakan Belauan sinar-X (XRD), Mikroskop Imbasan Elektron (SEM) dan Analisis Impedans. Analisi XRD menunjukkan bahawa BaTiO₃ dan BaTiO₃ didopkan Er telah mencapai fasa tunggal selepas dibakar pada suhu 1400°C. Kedua-dua BaTiO₃ dan BaTiO₃ didopkan Er mempunyai struktur tetragonal dengan kumpulan ruang P4mm. Had maksimum bagi BaTiO₃ didopkan Er ialah melebihi x=0.01. Untuk analisis struktur, analisis pembaikkan Rietveld telah dilakukan untuk 5 model BaTiO₃ (A,B,C,D and E) bagi mencari model yang mempunyai posisi atom yang sesuai serta mempunyai nilai χ^2 yang rendah dan ia akan digunakan sebagai model asas untuk pembaikkan sampel $BaTiO_3$ didopkan Er yang lain. Model C merupakan model terbaik yang mempunyai nilai χ^2 yang rendah dalam linkungan 3.808. Melalui analisi pembaikkan Rietveld, kita akan menyelidik mengenai penggantian Er ke dalam bahagian A dan B dalam struktur perovskite ABO₃. Hasilnya, Er boleh digantikan ke dalam kedua-dua bahagian A dan B kerana mempunyai nilai χ^2 yang hampir sama. Untuk analisis mikrostruktur, SEM telah digunakan untuk mengkaji kesan saiz bijian ke atas BaTiO₃ apabila ia digantikan dengan Er. Saiz bijian yang paling kecil untuk Ba_{1-x}Er_xTiO₃ adalah 3.76 µm pada x=0.0075. Untuk sifat elektrikal, komposisi $Ba_{1-x}Er_{x}TiO_{3}$ pada x=0.0075 mempunyai nilai pemalar dielektrik yang tertinggi, $\varepsilon_r = \sim 6500$ dibandingkan dengan BaTiO₃ yang mempunyai nilai pemalar dielektrik, ε_r ~ 5200. Selain itu, sampel pada x=0.0075 mempunyai nilai kehilangan dielektrik yang rendah daripda 0.1. Nilai kemuatan yang tertinggi pada x=0.0075 iaitu pada nilai pemalar dielektrik yang tertinggi ialah $C = \sim 4 \times 10^{-9} \text{ Fcm}^{-1}$ dengan jumlah konduktiviti, σ = 4 x 10⁻⁷Scm⁻¹. Sifat Kemuatan-Voltan (C-V) juga dinilai dari 0 sehingga 30 V dan kesemua sampel mempunyai kemuatan yang tinggi setelah voltan meningkat sehingga 30 V tanpa tanda kerosakkan. Sampel yang mempunyai pemalar dielektrik yang tertinggi, kadar kehilangan dielektrik yang rendah dan sifat C-V yang bagus adalah sampel pada x = 0.0075.

Synthesis and Characterization of High Dielectric Constant Material Based on Er-doped BaTiO₃ for Capacitor Application

ABSTRACT

High dielectric constant material becomes an important parameter to be used as capacitor for storage in most electronic devices due to miniaturization trend of smart devices and electronic gadgets. BaTiO₃ was used in this study as it was reported to have a high dielectric constant (ϵ_r = 4000-10000) at Curie temperature (T_C) around 110°C. Furthermore, it was reported that by doping Erbium (Er) into BaTiO₃, it can improve the dielectric properties of BaTiO₃. BaTiO₃ and Er-doped BaTiO₃ with composition of $Ba_{1-x}Er_xTiO_3$ in the range of $(0 \le x \le 0.01)$ have been synthesized via conventional solid state reaction method. The characterizations of these compositions were made using X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) analysis and Impedance Analyzer analysis. XRD analysis shows that BaTiO₃ and Er-doped BaTiO₃ has phase pure after heating at 1400°C. Both BaTiO₃ and Er-doped BaTiO₃ exhibit tetragonal structure with space group of P4mm. Solid solution limit of Er-doped BaTiO₃ composition is beyond x=0.01. For structural analysis, Rietveld refinement analysis were done on BaTiO₃ for 5 models (A, B, C, D and E) to find the suitable atomic position with low χ^2 value to be used as standard model to refine other Er-doped BaTiO₃ samples. Model C is the best model with low χ^2 value of 3.808. With Rietveld refinement analysis, study on incorporation of Er into the A-site and B-site of perovskite ABO₃ structure was done. The result indicates that Er can be at both side either A or B site because of the χ^2 value that is very similar. For microstructural analysis, SEM was used to study the grain size effect by doping Er into BaTiO₃. The smallest grain size for $Ba_{1-x}Er_xTiO_3$ was 3.76 µm at x=0.0075. For electrical properties, the composition of $Ba_{1-x}Er_xTiO_3$ at x=0.0075 has the highest dielectric constant value, $\varepsilon_r = \sim 6500$ as compared to pure BaTiO₃ with dielectric constant value, $\varepsilon_r = \sim 5200$. Instead of that, the sample at x=0.0075 has low dielectric loss with value less than 0.1. The highest capacitance value for x=0.0075 at the highest dielectric constant value is C = ~4 x 10⁻⁹ Fcm⁻¹ with total conductivity, σ = 4 x 10⁻⁷ Scm⁻¹. The Capacitance-Voltage (C-V) characteristic were measured from 0 to 30 V and all the samples show a high capacitance by increasing the voltage up to 30 V with no signal of breakdown region. The sample with the highest dielectric constant, low loss and good C-V characteristic is the sample with x = 0.0075.

CHAPTER 1 : INTRODUCTION

1.1 Background

Energy storage is very important in many fields as it can improve the quality of life. It is constantly driven by technological challenges and innovation. It provides the basic components to support a variety of electronic devices including computers, industrial controls, consumer automotive devices, and digital switches. One of the commonly used components in this field is capacitor. Capacitor is an important electronic component that is widely used in electronic industry to store electrical charges. There are many types of capacitor such as ceramic capacitors, film capacitors, electrolytic capacitors and supercapacitors. The capacitors might have different types but all of them have the same function which is storing energy (Ekanath, 2012; Hao, 2013)

In current technology, miniaturization is the trend to produce smaller electronic product and devices. As an example, the evolution of computer from giant-size computer to the netbook that is more smaller with improve functions. Consequently, in modern electronics industry, people attempts to reduce the size of the electronic devices to be small and light as possible. Thus, the electronic devices are driven by miniaturization. The devices will have reduction in size with the same function without compromising the performance and the reliability of devices. One of the best possible ways to achieve component size reduction is through the improvement of component in devices. Capacitors are energy storage devices used in most of the modern electronic applications. Multilayer ceramic capacitor (MLCC) is the most widely used in microelectronic devices, made of titanate based materials. Most of it constitutes more than half of the entire global capacitor market, worth multibillion U.S dollars. Most of MLCC used in application such as mobile electronic equipment (cellular phones or portable personal computers). The use of MLCC's dominate at present and will play a major role in future (Kishi, Mizuno, & Chazono, 2003; Sakabe, 1997; Wu, Wang, & Zeng, 2012). jinal copyriot

1.2 **Basic structure of capacitor**

Many different kinds of capacitors are available in the market, comprising very small capacitor beads used in resonance circuits to large power factor correction capacitors. Capacitors are basically formed with the same basic structure which consists of two parallel conductive (metal) plates which are not connected with each other, but electrically separated either by vacuum or by some form of a good insulating material such as waxed paper, mica, ceramic, plastic or some form of a liquid gel as used in electrolytic capacitors as shown in Figure 1.1. The insulating layer between the capacitor plates is commonly called the dielectric (Callister, 2001; Tournier, 2014).

Figure 1.1: A typical capacitor and its basic structure (Callister, 2001; Tournier, 2014)

1.3 Properties of dielectric material in capacitor

Ideally, dielectric properties can be defined from the behaviour of the material in a parallel plate capacitor. Figure 1.2 (a) and (b) shows a parallel plate capacitor without and with dielectric material, which is placed between two metal plates and separated by a distance respectively.

Figure 1.2: Parallel plate capacitor (a) without and (b) with dielectric material between the plates.

Figure 1.2(a) shows a simple parallel-plate capacitor in vacuum condition. In vacuum condition, there is only free space as a dielectric in between the parallel plates. When the voltage is applied, the positive charges and negative charges will be produced at each plate. The charge is found to be directly proportional to the applied voltage through the Equation 1.1 of:

$$C = Q/V \tag{1.1}$$

where C is the capacitance, Q is the charge and V is the applied voltage. By increasing the voltage more charge is accumulated at each plate and the capacitance value of capacitor will increase. The capacitance of a capacitor is a measure of its ability to store electric charge (Ekanath, 2012). The capacitance value of a capacitor with vacuum between the plates can be calculated using Equation 1.2 below;

$$C = \varepsilon_o \frac{A}{l} \tag{1.2}$$

where ε_0 is dielectric constant of free space which is 8.854 x 10⁻¹² F/m (Callister, 2001), A is the area of the plates in meters, *l* is distance between plates in meters and C is the capacitance in Farad. So, the capacitance will only depend on the geometric factor since the ε_0 is constant. By increasing the area, the capacitance will be increased.

Figure 1.2(b) shows the parallel plate capacitor with the effect of the dielectric constant (ε_r) or known as permittivity. When a dielectric fills the space between the plates as shown in Figure 1.2(b), the capacitance will be increased by a factor of ε_r . Based on Figure 1.2 (b), the capacitance of two conducting plate can be calculated using the Equation 1.3.

$$C = \varepsilon_r \varepsilon_o \frac{A}{l} \tag{1.3}$$

where C is the capacitance in Farads, ε_r is the dielectric constant of material, ε_o is the dielectric constant of free space, A is the area of plate and *l* is distance between plates in meters. From the equation, in order to increase the capacitance, three parameters can be modified by increasing the area of metal plates, decreasing the distance between the plates and increasing the dielectric constant.

As the area of the metal plate increases, the capacitance value also increases as it is directly proportional to the capacitance. But this can be achieved only up to a small value. As we increase the area more and more, there is no more miniaturization and capacitor becomes more bulky and it would be difficult to include the capacitor in miniature level circuits. The distance between the plates is inversely proportional to the capacitance. Hence, decreasing the distance may seem to be a good idea to increase the capacitance. But as the distance between the plates decreases, the charges can be easily attracted towards each other thus creating an electrical short. Hence it no longer acts as a capacitor, but just a shorted wire. This is also termed as dielectric breakdown (A. J. Moulson & Herbert, 2003). Hence capacitors with very low distance of separation may have very low dielectric breakdown strength. Besides, increasing the dielectric constant has been a promising technique in increasing the capacitance of the capacitor. Hence, the research is focused in increasing the capacitance by increasing the dielectric constant. Increasing the dielectric constant value will not degrade the performance of the capacitor. Thus, choosing a dielectric with high dielectric constant value would be a good approach.