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Sintesis dan Pencirian Bahan Pemalar Dielektrik yang Tinggi 

Berdasarkan Er-doped BaTiO3 untuk Aplikasi Kapasitor 

ABSTRAK 

Hala pengecilan dalam teknologi peranti pintar dan alat elektronik telah menjadikan 

bahan yang mempunyai pemalar dielektrik yang tinggi menjadi satu parameter yang 

penting untuk digunakan sebagai kapasitor bagi penyimpanan data dalam alatan 

elektronik. Dalam kajian ini, BaTiO3 telah digunakan kerana ia dilaporkan mempunyai 

pemalar dielektrik yang tinggi (εr= 4000-10000) pada suhu Curie (TC) dalam 

lingkungan 110˚C. Tambahan pula, Erbium (Er) telah dilaporkan bahawa sekiranya Er 

digantikan (didopkan) ke dalam BaTiO3, ia dapat meningkatkan sifat dielektrik  

BaTiO3. Komposisi BaTiO3 dan BaTiO3 didopkan Er dalam kadar (0 ≤ x ≤ 0.01) telah 

disediakan melalui kaedah sintesis keadaan pepejal. Pencirian komposisi-komposisi ini 

telah dilakukan dengan menggunakan Belauan sinar-X (XRD), Mikroskop Imbasan 

Elektron (SEM) dan Analisis Impedans. Analisi XRD menunjukkan bahawa BaTiO3 

dan BaTiO3 didopkan Er telah mencapai fasa tunggal selepas dibakar pada suhu 

1400˚C. Kedua-dua  BaTiO3 dan BaTiO3 didopkan Er mempunyai struktur tetragonal 

dengan kumpulan ruang P4mm. Had maksimum bagi BaTiO3 didopkan Er ialah 

melebihi x=0.01. Untuk analisis struktur, analisis pembaikkan Rietveld telah dilakukan 

untuk 5 model BaTiO3 (A,B,C,D and E) bagi mencari model yang mempunyai posisi 

atom yang sesuai serta mempunyai nilai 
2 

yang rendah dan ia akan digunakan sebagai 

model asas untuk pembaikkan sampel BaTiO3 didopkan Er yang lain. Model C 

merupakan model terbaik yang mempunyai nilai 
2 

yang rendah dalam linkungan 3.808. 

Melalui analisi pembaikkan Rietveld, kita akan menyelidik mengenai penggantian Er ke 

dalam bahagian A dan B dalam struktur perovskite ABO3. Hasilnya, Er boleh 

digantikan ke dalam kedua-dua bahagian A dan B kerana mempunyai nilai 
2
 yang 

hampir sama. Untuk analisis mikrostruktur, SEM telah digunakan untuk mengkaji kesan 

saiz bijian ke atas BaTiO3 apabila ia digantikan dengan Er. Saiz bijian yang paling kecil 

untuk Ba1-xErxTiO3 adalah 3.76 m pada x=0.0075. Untuk sifat elektrikal, komposisi 

Ba1-xErxTiO3 pada x=0.0075 mempunyai nilai pemalar dielektrik yang tertinggi,          

εr= ~ 6500 dibandingkan dengan BaTiO3 yang mempunyai nilai pemalar dielektrik,    

εr= ~ 5200. Selain itu, sampel pada x=0.0075 mempunyai nilai kehilangan dielektrik 

yang rendah daripda 0.1. Nilai kemuatan yang tertinggi pada x=0.0075 iaitu pada nilai 

pemalar dielektrik yang tertinggi ialah C= ~4 x 10
-9 

Fcm
-1

 dengan jumlah konduktiviti, 

ζ= 4 x 10
-7

Scm
-1

. Sifat Kemuatan-Voltan (C-V) juga dinilai dari 0 sehingga 30 V dan 

kesemua sampel mempunyai kemuatan yang tinggi setelah voltan meningkat sehingga 

30 V tanpa tanda kerosakkan. Sampel yang mempunyai pemalar dielektrik yang 

tertinggi, kadar kehilangan dielektrik yang rendah dan sifat C-V yang bagus adalah 

sampel pada x= 0.0075. 
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Synthesis and Characterization of High Dielectric Constant 

Material Based on Er-doped BaTiO3 for Capacitor Application      

ABSTRACT 

High dielectric constant material becomes an important parameter to be used as 

capacitor for storage in most electronic devices due to miniaturization trend of smart 

devices and electronic gadgets. BaTiO3 was used in this study as it was reported to have 

a high dielectric constant (εr= 4000-10000) at Curie temperature (TC) around 110˚C. 

Furthermore, it was reported that by doping Erbium (Er) into BaTiO3, it can improve 

the dielectric properties of BaTiO3. BaTiO3 and Er-doped BaTiO3 with composition of 

Ba1-xErxTiO3 in the range of (0 ≤ x ≤ 0.01) have been synthesized via conventional solid 

state reaction method. The characterizations of these compositions were made using   

X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) analysis and 

Impedance Analyzer analysis. XRD analysis shows that BaTiO3 and Er-doped BaTiO3 

has phase pure after heating at 1400˚C. Both BaTiO3 and Er-doped BaTiO3 exhibit 

tetragonal structure with space group of P4mm. Solid solution limit of Er-doped 

BaTiO3 composition is beyond x=0.01. For structural analysis, Rietveld refinement 

analysis were done on BaTiO3 for 5 models (A, B, C, D and E) to find the suitable 

atomic position with low 
2
 value to be used as standard model to refine other Er-doped 

BaTiO3 samples. Model C is the best model with low 
2
 value of 3.808. With Rietveld 

refinement analysis, study on incorporation of Er into the A-site and B-site of 

perovskite ABO3 structure was done. The result indicates that Er can be at both side 

either A or B site because of the 
2
 value that is very similar. For microstructural 

analysis, SEM was used to study the grain size effect by doping Er into BaTiO3. The 

smallest grain size for Ba1-xErxTiO3 was 3.76 m at x=0.0075. For electrical properties, 

the composition of Ba1-xErxTiO3 at x=0.0075 has the highest dielectric constant value, 

εr= ~ 6500 as compared to pure BaTiO3 with dielectric constant value, εr= ~ 5200. 

Instead of that, the sample at x=0.0075 has low dielectric loss with value less than 0.1. 

The highest capacitance value for x=0.0075 at the highest dielectric constant value is 

C= ~4 x 10
-9 

Fcm
-1

 with total conductivity, ζ= 4 x 10
-7

Scm
-1

. The Capacitance-Voltage 

(C-V) characteristic were measured from 0 to 30 V and all the samples show a high 

capacitance by increasing the voltage up to 30 V with no signal of breakdown region. 

The sample with the highest dielectric constant, low loss and good C-V characteristic is 

the sample with x= 0.0075. 
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CHAPTER 1 : INTRODUCTION 

1.1 Background 

Energy storage is very important in many fields as it can improve the quality of 

life. It is constantly driven by technological challenges and innovation. It provides the 

basic components to support a variety of electronic devices including computers, 

industrial controls, consumer automotive devices, and digital switches. One of the 

commonly used components in this field is capacitor. Capacitor is an important 

electronic component that is widely used in electronic industry to store electrical 

charges. There are many types of capacitor such as ceramic capacitors, film capacitors, 

electrolytic capacitors and supercapacitors. The capacitors might have different types 

but all of them have the same function which is storing energy (Ekanath, 2012; Hao, 

2013) 

In current technology, miniaturization is the trend to produce smaller electronic 

product and devices. As an example, the evolution of computer from giant-size 

computer to the netbook that is more smaller with improve functions. Consequently, in 

modern electronics industry, people attempts to reduce the size of the electronic devices 

to be small and light as possible. Thus, the electronic devices are driven by 

miniaturization. The devices will have reduction in size with the same function without 

compromising the performance and the reliability of devices. One of the best possible 

ways to achieve component size reduction is through the improvement of component in 

devices. Capacitors are energy storage devices used in most of the modern electronic 
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applications. Multilayer ceramic capacitor (MLCC) is the most widely used in 

microelectronic devices, made of titanate based materials. Most of it constitutes more 

than half of the entire global capacitor market, worth multibillion U.S dollars. Most of 

MLCC used in application such as mobile electronic equipment (cellular phones or 

portable personal computers). The use of MLCC’s dominate at present and will play a 

major role in future (Kishi, Mizuno, & Chazono, 2003; Sakabe, 1997; Wu, Wang, & 

Zeng, 2012). 

1.2 Basic structure of capacitor 

Many different kinds of capacitors are available in the market, comprising very 

small capacitor beads used in resonance circuits to large power factor correction 

capacitors. Capacitors are basically formed with the same basic structure which consists 

of two parallel conductive (metal) plates which are not connected with each other, but 

electrically separated either by vacuum or by some form of a good insulating material 

such as waxed paper, mica, ceramic, plastic or some form of a liquid gel as used in 

electrolytic capacitors as shown in Figure 1.1. The insulating layer between the 

capacitor plates is commonly called the dielectric (Callister, 2001; Tournier, 2014). 

 

Figure 1.1: A typical capacitor and its basic structure  (Callister, 2001; Tournier, 2014) 

. 
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1.3 Properties of dielectric material in capacitor 

Ideally, dielectric properties can be defined from the behaviour of the material 

in a parallel plate capacitor. Figure 1.2 (a) and (b) shows a parallel plate capacitor 

without and with dielectric material, which is placed between two metal plates and 

separated by a distance respectively. 

 

 

Figure 1.2: Parallel plate capacitor (a) without and (b) with dielectric material between 

the plates. 

Figure 1.2(a) shows a simple parallel-plate capacitor in vacuum condition. In 

vacuum condition, there is only free space as a dielectric in between the parallel plates. 

When the voltage is applied, the positive charges and negative charges will be produced 

at each plate. The charge is found to be directly proportional to the applied voltage 

through the Equation 1.1 of: 
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VQC /  (1.1) 

 

 

where C is the capacitance, Q is the charge and V is the applied voltage. By increasing 

the voltage more charge is accumulated at each plate and the capacitance value of 

capacitor will increase. The capacitance of a capacitor is a measure of its ability to store 

electric charge (Ekanath, 2012). The capacitance value of a capacitor with vacuum 

between the plates can be calculated using Equation 1.2 below; 

l

A
C   

(1.2)  

 

where εo  is dielectric constant of free space which is 8.854 x 10
-12

 F/m (Callister, 2001), 

A is the area of the plates in meters, l is distance between plates in meters and C is the 

capacitance in Farad. So, the capacitance will only depend on the geometric factor since 

the εo is constant.  By increasing the area, the capacitance will be increased. 

 Figure 1.2(b) shows the parallel plate capacitor with the effect of the dielectric 

constant (εr) or known as permittivity. When a dielectric fills the space between the 

plates as shown in Figure 1.2(b), the capacitance will be increased by a factor of εr. 

Based on Figure 1.2 (b), the capacitance of two conducting plate can be calculated 

using the Equation 1.3. 

l

A
C r   

(1.3) 
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where C is the capacitance in Farads, εr is the dielectric constant of material, εo is the 

dielectric constant of free space, A is the area of plate and l is distance between plates in 

meters. From the equation, in order to increase the capacitance, three parameters can be 

modified by increasing the area of metal plates, decreasing the distance between the 

plates and increasing the dielectric constant. 

As the area of the metal plate increases, the capacitance value also increases as 

it is directly proportional to the capacitance. But this can be achieved only up to a small 

value. As we increase the area more and more, there is no more miniaturization and 

capacitor becomes more bulky and it would be difficult to include the capacitor in 

miniature level circuits.  The distance between the plates is inversely proportional to the 

capacitance. Hence, decreasing the distance may seem to be a good idea to increase the 

capacitance. But as the distance between the plates decreases, the charges can be easily 

attracted towards each other thus creating an electrical short. Hence it no longer acts as 

a capacitor, but just a shorted wire. This is also termed as dielectric breakdown           

(A. J. Moulson & Herbert, 2003). Hence capacitors with very low distance of separation 

may have very low dielectric breakdown strength. Besides, increasing the dielectric 

constant has been a promising technique in increasing the capacitance of the capacitor. 

Hence, the research is focused in increasing the capacitance by increasing the dielectric 

constant.  Increasing the dielectric constant value will not degrade the performance of 

the capacitor. Thus, choosing a dielectric with high dielectric constant value would be a 

good approach. 
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