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Kesan Kandungan Pengisi dan Modifikasi Kimia Keatas Sifat-Sifat Polilaktik 

Asid/Polietilena Ketumpatan Rendah Kitar Semula/Serat Nipa Fruktikan 

Biokomposit 

 

 

ABSTRAK 

 

 

 

Biokomposit serat Nipa fruktikan (SNF) terisi polilaktik asid (PLA)/polietilena 

ketumpatan rendah kitar semula (PKRKS) telah disediakan menggunakan Brabender 

Plastikorder EC PLUS pada suhu 180 ˚C dan kelajuan rotor 50 rpm. Kesan kandungan 

SNF dan jenis-jenis modifikasi-modifikasi kimia yang berbeza ke atas sifat-sifat tensil, 

morfologi, sifat-sifat terma dan biorosotan biokomposit PLA/PKRKS telah dikaji. 

Pelbagai jenis-jenis modifikasi-modifikasi kimia seperti polietilena dicantum maleik 

anhidrida (PEMA), 3-aminopropiltriektoksisilana (3-APE), asid metil metakrilat 

(AMM), asid etilenadiaminatetraasetik garam-2-hidrat (AEDT), dan enzim telah 

digunakan, berturut-turut. Keputusan menunjukkan bahawa penambahan SNF kedalam 

PLA/PKRKS telah mengurangkan kekuatan tensil, pemanjangan pada takat putus, dan 

darjah penghabluran (Xc), dimana modulus Young dan kestabilan terma meningkat. 

Kesan α-amilase terhadap biorosotan biokomposit PLA/PKRKS/SNF menunjukkan 

dengan peningkatan kandungan SNF, meningkatkan kadar biorosotan biokomposit. 

Morfologi permukaan patahan tensil telah menunjukkan bahawa interaksi yang lemah 

terjadi diantara SNF dengan matrik PLA/rLDPE. Modifikasi-modifikasi kimia 

menghasilkan kesan positif ke atas sifat-sifat tensil dan terma biokomposit 

PLA/PKTKS/SNF. Kehadiran PEMA, 3-APE, AMM, AEDT, AEDT/Enzim dan 3-

APE/Enzim telah meningkatkan kekuatan tensil, modulus Young, darjah penghabluran 

dan kestabilan terma biokomposit. Biokomposit terawat PLA/PKRKS/SNF dengan 3-

APE/Enzim mempunyai kekuatan tensil, modulus Young, dan kestabilan terma yang 

paling tinggi berbanding biokomposit dengan modifikasi-modifikasi kimia yang lain. 

Walaubagaimana, biokomposit PLA/PKRKS/SNF terawat dengan AMM mempunyai 

darjah penghabluran yang tertinggi. Sementara, biokomposit PLA/PKRKS/SNF terawat 

dengan AEDT menunjukan kadar biorosotan yang paling tinggi. Interaksi antara muka 

yang lebih baik diantara SNF yang terawat dan matrik PLA/PKRKS telah dibuktikan 

melalui kajian SEM. FTIR spektra menunjukkan bahawa perubahan-perubahan 

kumpulan berfungsi biokomposit yang terawat.  
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The Effect of Filler Content and Chemical Modification On Properties of 

Polylactic Acid/Recycled Low Density Polyethylene/Nypa Fruticans Husk 

Biocomposites 

 

 

ABSTRACT 

 

 

 

Nypa fruticans husk (NFH) filled polylactic acid (PLA)/recycled low density 

polyethylene (rLDPE) biocomposites had been prepared using Brabender Plasticoder 

EC PLUS at temperature 180˚C and rotor speed 50 rpm. The effect of NFH content and 

different types of chemical modifications on tensile properties, morphology, thermal 

properties and biodegradation of PLA/rLDPE/NFH biocomposites were studied. The 

various types of chemical modifications such as Polyethylene grafted maleic anhydride 

(PEMA), 3-Aminopropyltriethoxysilane (3-APE), Methyl methacrylate acid (MMA), 

Ethylenediaminetetraacetic acid disodium salt-2-hydrate (EDTA), and enzyme were 

used, respectively. The results showed that the addition of NFH reduced the tensile 

strength, elongation at break and degree of crystallinity (Xc), whereas the Young‘s 

modulus and thermal stability of biocomposites increased. The effects of α-amylase on 

the enzyme biodegradation of PLA/rLDPE/NFH biocomposites showed that the 

increased of NFH content has increased the biodegradation rate of the biocomposites. 

The morphology tensile fracture surface of PLA/rLDPE/NFH biocomposites indicates 

that poor interaction occurred between NFH and PLA/rLDPE matrix. The chemical 

modifications of NFH resulted positive effect on tensile and thermal properties of 

PLA/rLDPE/NFH biocomposites. The presence of PEMA, 3-APE, MMA, EDTA, 

EDTA/Enzyme and 3-APE/Enzyme have increased the tensile strength, Young‘s 

modulus, degree of crystallinity and thermal stability of biocomposites, whereas the 

elongation at break decreased. The treated PLA/rLDPE/NFH biocomposites with 3-

APE/Enzyme have highest tensile strength, Young‘s modulus, and thermal stability 

compared to other chemical modifications of biocomposites. However, 

PLA/rLDPE/NFH biocomposites treated with MMA has highest degree of crystallinity. 

Meanwhile PLA/rLDPE/NFH biocomposites treated with EDTA exhibited highest rate 

of biodegradation. The better interfacial interaction between treated NFH and 

PLA/rLDPE matrix was proven by SEM study. The spectra FTIR indicated that the 

changes of functional group of treated biocomposites. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1 Research Background 

 

The growing environmental concern and increasing scarcity of fossil fuel 

resources have proven an intensive demand for biomass with controllable properties, 

with the desire to reduce petroleum consumption and mitigate pollution (Lu & Oza, 

2013; Zhang & Sun, 2004). Biodegradable polymers have received much attention 

recently with growing pressure on the world resources as well as concern about disposal 

of plastics and commercial activity. Biodegradability, greenhouse, gas emission and 

renewability are the environmental benefits offered by biopolymer (Rajesh & Prasad, 

2014). 

 

Poly (lactic acid) (PLA) made from renewable agriculture raw materials which 

are fermented to lactic acid, has been considered to be a type of commercial available 

and fully biodegradable polymers (Duhovic et al., 2009; Koronis et al., 2013; Lu et al., 

2014; Qu et al., 2010). PLA is now one of the most promising biodegradable polymers 

for industrial plastic application, which served as an alternative to conventional 

synthetic polymer (Pantani & Sorrentino, 2013). Because of the demand of 

biodegradable based products in recent years, PLA based products are manufactured 
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commercially in many countries. Their application include film, food packaging, 

textiles, disposal bottle and table ware (Auras et al., 2004; Jia et al., 2014). In order to 

make them appropriate in many technical applications, the mechanical properties of 

PLA can be improved by using reinforcement (A et al., 2015; Akbari et al., 2015; Iwata, 

2015; Shukor et al., 2014). 

 

Nowadays, natural fibers exhibit many advantages over the synthetic fibers such 

as low density, low cost , high strength, high specific modulus and especially their 

recyclability (Salleh et al., 2014; Yu et al., 2014). The reinforcement of PLA with 

natural fibers seems to be a logical alternative in order to increase their mechanical 

performance as well as keeping the final material environmentally friendly. Some 

researchers have reported the natural fibers or fillers as reinforcement of PLA as shown 

in Table 1.1. 
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Table 1.1 : Natural Fibers as filler in PLA. 

Natural Fiber Reported by researcher 

Kenaf 
Huda et al., 2008; Ochi, 2008 

Hemp 
Baghaei et al., 2013; Oza et al., 2014; Sawpan 

et al., 2011 

 

Ramie 
Chen et al., 2015; Yu et al., 2010; Zhou et al., 

2012 

 

Rice straw 
Qin et al., 2011; Zhao et al., 2011 

Abaca 
Bledzki et al., 2009; Reddy & Yang, 2015 

Jute 
Arao et al., 2015; Ma & Joo, 2011; Memon & 

Nakai, 2013; Rajesh & Prasad, 2014 

 

Bamboo 
Kumar et al., 2013; Lu et al., 2014; Young et 

al., 2014 

 

Oil palm 
Jaffar Al-Mulla et al., 2013; Koutsomitopoulou 

et al., 2014 

 

Flax 
Manshor et al., 2014; Nassiopoulos & Njuguna, 

2015; Zhu et al., 2013 

 

Cordenka 
Bax & Müssig, 2008 

Wood 
Csizmadia et al., 2013; Peltola et al., 2014 

Lignin 
Spiridon et al., 2015 

 

Nypa fruticans is a monoecious palm with special characteristics. Contrast to 

usual palms like coconut and oil palm, it thrives in river estuaries and brackish water 

environment in which salt and fresh water mingle. Nypa fruticans are a major source 

which are extensively used as thatching materials but most parts of the Nypa fruticans 

are left to decompose at its habitat (Rahman, 2000). Therefore, Nypa fruticans is an 

abundance resource that can be found throughout the year. Nypa fruticans consisting of 

frond, shell, husk and leaf. The total chemical composition showed that the cellulose 
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and hemicellulose contents were in the range of 28.9–45.6 wt% and 21.8–26.4 wt%, 

respectively. The lignin content was 19.4–33.8 wt% with the highest lignin content 

found in leaf. Besides the main chemical components, starch, protein and extractives 

were also present in significant amounts from 2 to 8 wt%. Additionally, the ash content 

was high from 5.1 to 11.7 wt%  (Tamunaidu & Saka, 2011). In overall, each part of the 

Nypa fruticans has its individual superior characteristics and could be exploited as 

lignocellulosic resources for biocomposites. 

  

On the other hand, PLA was chosen for its high biocompatibility and 

biodegradability. It has become an alternative to traditional commodity plastics for 

everyday applications as an environmental friendly polymer due to its some unique 

properties such as high strength, high stiffness and resistance to fats and oil (Hamad et 

al., 2011b). However, brittleness and other properties such as low viscosity, low thermal 

stability, high moisture sensitivity, medium gas barrier properties, high cost (comparing 

with PE, PP, PS, etc) and low solvents resistance (e.g., against water) are often 

insufficient for many applications . Therefore, blending can aid in the development of 

new biocomposite products with better performance (Akbari et al., 2015; Ebadi-

Dehaghani et al., 2015; Hamad et al., 2011b; Ouchiar et al., 2015; Yu et al., 2006; Zhou 

et al., 2015). 

 

The properties of PLA can be modified by polymer blending techniques, where 

it was blended with several synthetic and biopolymers in efforts to enhance its 

properties and also to obtain novel materials as shown in Table 1.2. PLA have been 

blended with different polymers to obtain materials with lower cost and improved 

properties. 
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