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Al-Cugaints; (a, b) FSW joint at 700 rpm, (500x and 3000x%); (c, d) FSW joint
at 1000 rpm, (500x and 3000x) and (e, f) FSW joint at 1500 rpm, (500% and
3000%).

4.73: Effects of rotational speeds on friction temperature of joining commercial
pure Al and Cu.

4.74:. Effects of rotational speeds on frictional heat generation of joining
commercial pure Al and Cu.

4.75: Effects of rotational speeds on the frictional heat flux of joining commercial
pure Al and Cu.

4.76: Optical macrograph of dissimilar Al and Cu joint, FSW at a rotational speed
of 1000; (a) Top view and (b) Bottom view.
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4.77: Optical macrograph of dissimilar Al and Cu joint, FSW at a rotational speed
of 1750; (a) Top view and (b) Bottom view.

4.78: Optical macrograph of dissimilar Al and Cu joint, FSW at a rotational speed
of 2000; (a) Top view and (b) Bottom view.

4.79: : Microstructural analysis of dissimilar Al and Cu joints friction stir welded
at; (@) 1750 rpm and (b) 2000 rpm.

4.80: FESEM and EDX analysis of dissimilar Al and Cu joint friction stir welded at
1000 rpm.

4.81: FESEM and EDX analysis of dissimilar Al and Cu joint friction stir welded at
1750 rpm.

4.82: FESEM and EDX analysis of dissimilar Al and Cu joint friction stir welded at
2000 rpm.

4.83: XRD analysis of the welded joints FSW at a: (a) 2000, (b) 1750 and (c) 1000
rpm.

4.84: Tensile strain-stress curves of dissimilat \FSW Al-Cu joints at different
rotational speeds compared to the BMs.

4.85: The average transverse microhardness across the welded joints at different
rotational speeds.

4.86: FESEM micrographs showing tensile fracture surfaces of FSW dissimilar Al-
Cu joints at different raotational speeds; (a) 1000, (b) 1750 and (c) 2000 rpm.

4.87: Effects of tool rotational speeds on friction temperature through FSW of Al
and Cu.

4.88: Effects of tool rotational speeds on the frictional heat generation of FSW Al
and Cu:

4.89: Effects of tool rotational speeds on the frictional heat flux of FSW Al and Cu.
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FSP
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SiC
HAZ
Vol.
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TWI
SZ

NZ
min
rpm
Al-Mg-Si
TEM
Al,Cug
Al,Cu
AlCu
TMAZ
Al,O3
SMAT

SNC

LIST OF ABBREVIATIONS

Friction Stir Welding

Advancing Side

Retreating Side

Friction Stir Processing

Base Metal

Silicon Carbide

Heat Affected Zone

Volume

Magnesium silicide

The Welding Institute

Stir Zone

Nugget Zone

Minute

Revolution Per Minute
Aluminum-Magnesium-Silicon
Transmission Electron Microscopy
Intermetallic Compound
Intermetallic Compound
Intermetallic Compound
Thermomechanically Affected Zone
Aluminum Oxide

Surface Mechanical Attrition Treatment

Surface Nano Crystallization

XX



ECAP Equal Channel Angular Processing

ECAE Equal Channel Angular Extrusion

nm Nanometer

MIG Metal Inert Gas

UTS Ultimate Tensile Strength

YS Yield Strength

BMs Base Metals

FESEM Field Emission Scanning Electron Microscopy
EDX Energy-Dispersive X-ray Spectroscopy
HRC Rockwell Hardness

oM Optical Microscope

AFM Atomic Force Microscopy

OES Optical Emission Spectrometry

ASTM American Standard Testing of Materials
NaOH Sodium Hydroxide

XRD X-Ray-Diffraction

Wit% Weight Percent

At% Atomic Percent
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LIST OF SYMBOLS

Al-Mg-Si Aluminum-Magnesium-Silicon

°C Celsius Temperature

Ra Surface Roughness, (hm)

Rmax Maximum Surface Roughness, (hm)
Hy Hardness Value

Ho, and Kn The Proper Constants

d Grain Size, (um or nm)
P Dislocation Density
Kr Material Constant

friction coefficient

M Interfacial Torque

R Shoulder Radius,(mm)

F(r Axial Force;-(Newton)

Jo Friction Heat Input, (watts)

® Angular Velocity,(rad/sec)

N Rotational Speed, (rad/sec)

Mn Manganese

Zn Zinc

Cu Copper

kN Kilonewton

R1 As-Received Surface Roughness

R2 Surface Roughness of Specimen Number Two
R3 Surface Roughness of Specimen Number Three
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R4

Hz

ml

kv

mA

AL
Lo
T1
T2
kg
Pr

dy

Ac

wit.

T1

T

Surface Roughness of Specimen Number Four

Second
Watt

Hertz
Milliliter
Gram
Kilovolt
Milliampere

Kelvin

linear thermal expansion coefficient, (K.')
Change in Length of the Test Riece;(mm)

Initial Length of the Test Piece, (mm)

Reference Temperature, (K)

Test Temperature, (K)
Kilogram

Apphied Load, (Newton)

Arithmetic Mean of two Diagonal Lengths, (mm)

Shoulder Diameter, (mm)
Contact Area, (mm?)
Heat Flux, (Watt/mm?)
Weight

Carbon

Oxygen

Threaded Tapered Cylindrical

Triangular
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