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ABSTRACT 

Competition is a crucial ecological interaction between organisms. Despite the belief that 
competition benefits more vigorous species since lesser species tend to die out owing to lack of 
resources, there are times when even stronger species populations collapse. In this research, two 
species of the fish population that are subject to compete for the same resources are presented 
and discussed. This research focuses on analyzing the influence of the competition coefficient 
between these two species that are exposed to toxic substances. To accomplish this, first and 
foremost, the competition coefficient is chosen as a bifurcation parameter. Then, several 
bifurcation graphs, phase planes, and time series are presented using mathematical computing 
software such as Maple, Matlab and XPPAUT. This research indicates that different competition 
coefficient rates can affect the dynamic behavior of both species. By using one-parameter 
bifurcation analysis, it is analyzed that there is an existence of a transcritical bifurcation point. 
Findings revealed that when the competition parameter passes the transcritical bifurcation 
point, the stability of the two species shifted from unstable saddle to asymptotically stable steady 
state. 

Keywords: Bifurcation Analysis, Competition Interaction, Lotka-Volterra Model, Transcritical 
Bifurcation. 

1 INTRODUCTION 

Interaction between species refers to beneficial and harmful relationships between species that 
promote or restrict mutual population expansion and evolution. Competition, predation, parasitism, 
commensalism, and mutualism are all examples of interaction between species. Competition occurs 
when two or more species of the same or different species compete for resources. When food supplies 
are in short quantity relative to demand, much of the competition occurs. Nevertheless, organisms 
may compete for refuge, light, and substrate. Competition may be classified into numerous forms 
based on a variety of characteristics. Some of the competitive engagement falls into more than one of 
these categories. Based on taxonomic connection, competition is classified as interspecific and 
intraspecific. Essentially, interspecific competition occurs when two individuals from different 
species compete for the same resource. As a result, weaker species populations decline while more 
substantial species populations thrive. Interspecific competition is a crucial regulator of biological 
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communities and a natural selection mechanism. Intraspecific competition happens when 
individuals of the same species strive for limited natural resources.  

 Nearly a century ago, Lotka and Volterra established a firm, if massively oversimplified, the 
theoretical basis for competition. Ecological theory has benefited tremendously from their 
competitive equations, which are an outstanding illustration of how mathematics can be used to 
represent important ecological phenomena. For several years, this phenomenon has always been an 
area of concern to many researchers [1-4]. According to Vasilyeva and Lutscher [5], interspecies 
rivalry serves as a powerful tool for defining species variety and shaping society. Gavina et al. [6] has 
done extensive research on the multi-species coexistence in competitive systems with high crowding 
efficiency. According to the findings of the research, some species want to coexist. Haque and 
Sarwardi [7] investigated the effect of toxicity on the harvested fisheries model of two competing fish 
species where both species released harmful toxic compounds. The Lotka-Volterra prey-predator 
model has been used, in which the model system’s behavior is localized around any constant state. 
According to their results, the intensity of the toxins released by both species may change the 
phenomenological nature of the proposed system. Furthermore, the progressive rise in toxicity 
generated by both species has detrimental impacts on the environment and may ultimately lead to 
the extinction of both species. According to Swain and Chatterjee [8], estimating the competitive 
factors is a fundamental competition component, relying on the Lotka-Volterra population dynamical 
system. An intuitive method for estimating a competitive coefficient has been presented in these 
articles [9-12], which considers factors including resource availability, the proportional value of a 
given resource to a particular species, and resource energy consumption.  

Many researchers have developed mathematical systems to investigate population or species 
interactions, such as prey-predator interactions. The toxicity substance and harvesting effort of the 
fisheries model or population, for example, were employed by several of the researchers in their 
studies [13-16]. Although numerous studies have been done, the research on the competition 
coefficients with toxicity substance employing bifurcation analysis remains limited. Consequently, to 
address the gap in the literature, this paper will discuss the bifurcation analysis of the coefficient of 
competition in situations when both species in a population are competing for the same resources. 
The aim of this research was to investigate the impact of varying the coefficient of competition on the 
dynamic behavior of both populations. The structure of this paper is represented as follows: Section 
2 highlights the competition Lotka-Volterra model with the presence of toxicity substance. Following 
that, the presence of steady states, stability, and bifurcation analysis is presented. Section 3 reports 
on simulation performance, while Section 4 concludes with a final discussion and analysis of the 
current study's results in ecological terms. 

2 MATERIAL AND METHODS 

In general, the Lotka-Volterra model, often known as the interspecific competition model, is used to 
describe interspecific competition. The model is represented by  

𝑑𝑋

𝑑𝑡
= 𝑟1X (

𝐾 − 𝑋

𝐾
),        

𝑑𝑌

𝑑𝑡
= 𝑟2𝑌 (

𝐿 − 𝑌

𝐿
) . ( 1 ) 

The variable 𝑋 and 𝑌 denotes the population sizes of the two species. The parameters 𝑟1 and 𝑟2 
represent the growth rates of each species 𝑋 and 𝑌, respectively. The parameters 𝐾 and 𝐿 reflect how 
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many species may be supported by a given amount of habitat. As a result of competition, we must 
add a new variable to the system (1), which now extends to another one: 

𝑑𝑋

𝑑𝑡
= 𝑟1X (1 −

𝑋

𝐾
) − 𝛼𝑋𝑌,        

𝑑𝑌

𝑑𝑡
= 𝑟2𝑌 (1 −

𝑌

𝐿
) − 𝛽𝑋𝑌. ( 2 ) 

The competitive coefficients for species 𝑌 and 𝑋, respectively, are determined by the parameters 𝛼 
and 𝛽 as the competitive cofactors for 𝑋 and 𝑌. In the exclusion of the other species, 𝛼 and 𝛽, they 
compete for using exterior sources such as food, allowing the species to expand as development 
demands.  

The following model illustrates the impact of toxicity on the interactions of competing species. Both 
species produce toxic compounds that are detrimental to the population's reproductive system. Thus, 
the system (2) has been expanded to include toxic substances, represented as follows: 

𝑑𝑋

𝑑𝑡
= 𝑟1X (1 −

𝑋

𝐾
) − 𝛼𝑋𝑌 − 𝛾1𝑋3𝑌,        

𝑑𝑌

𝑑𝑡
= 𝑟2𝑌 (1 −

𝑌

𝐿
) − 𝛽𝑋𝑌 − 𝛾2𝑋𝑌2. ( 3 ) 

The toxicity coefficient is based on the parameters 𝛾1and 𝛾2. The term 𝛾1𝑋3 refers to a form of 
functional response of the 𝑌-species to the density of the 𝑋-species, which occurs through the 
production of toxic substances by the 𝑌-species to prevent the 𝑋-species from using shared 

resources. The term 𝛾2𝑌2 has a similar meaning. Since 
𝑑

𝑑𝑥
(𝛾1𝑥3) = 3𝛾1𝑥2 > 0 and 

𝑑2

𝑑𝑥2
(𝛾1𝑥3) =

6𝛾1𝑥 > 0 , the production of the toxic substance accelerates as the density of competing species 
increases. All parameters are presumptively positive. 

In the competitive fisheries model, the populations of two species will compete, and the consequence 
of the competition would either be a win or loss. Population interaction is essential for the survival 
of a population. In this research, we investigated the interaction in the competition coefficient of two 
species with toxicity and densities of 𝑋(𝑡) and 𝑌(𝑡), respectively. Then, MAPLE software is employed 
to perform the stability analysis on competition coefficient systems (3). 

System (3) is assumed to be equal to zero in order to determine the steady states or critical points. 
By using the Maple software, the Jacobian matrix for system (3) is formed, which is represented as: 

𝐽𝑋𝑌 = [
𝑟1 − (

2𝑟1

𝐾
) − 𝛼𝑌 − 3𝛾1𝑋2𝑌 −𝛼𝑋 − 𝛾1𝑋3

−𝛽𝑌 − 𝛾2𝑌2 𝑟2 − (
2𝑟2

𝐿
) − 𝛽𝑋 − 2𝛾2𝑋𝑌

].  

Therefore, the eigenvalues of each steady state are then determined in the above Jacobian matrix by 
substituting the value of steady states. When performing a stability analysis, the system is considered 
asymptotically stable if its eigenvalues are less than zero or negative. Otherwise, if all eigenvalues of 
the steady state are greater than zero or positive, the system is unstable. Finally, if the eigenvalues 
are in opposite sign, it is considered as unstable saddle steady state.  

To conduct the bifurcation analysis, we applied the numerical software called XPPAUT to capture the 
transcritical bifurcation point on the bifurcation diagram. The parameters used in the model of a 
competitive fishery (3) are listed in Table 1. 
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Table 1 :  The parameter used in competitive fishery system (3).  

Parameter Definition Value 

𝛼 Competition coefficient of species 𝑌 0.015 

𝛽 Competition coefficient of species 𝑋 0.01 

𝑟1 Growth rate on 𝑋 3.7 

𝑟2 Growth rate of 𝑌 1.2 

𝛾1 Toxicant rate of 𝑋 0.0004 

𝛾2 Toxicant rate on 𝑌 0.0003 

𝐾 Carrying capacity of species 𝑋 250 

𝐿 Carrying capacity of species 𝑌 100 

3 RESULTS AND DISCUSSION 

3.1 Stability Analysis 

In this section, the stability analysis of the population system's competition coefficient is investigated 
in further detail. Table 2 summarizes the results of the stability analysis. 

Table 2:  The stability analysis results. 

Steady states Eigenvalues Stability results 

𝐸1 = (0,0) 𝜆 1 = 3.7, 𝜆 2 = 1.2 Unstable  

𝐸2 = (0,100) 𝜆 1 =  2.2, 𝜆 2 =  −1.2 Unstable saddle  

𝐸3 = (250,0) 𝜆 1 =  −1.3, 𝜆 2 =  −3.7 Asymptotically stable  

𝐸4 = (118.352,0.347) 𝜆 1 =  0.3712, 𝜆 2 =  −6.0257 Unstable saddle  

𝐸5 = (8.973,75.571) 𝜆 1 =  −0.8578, 𝜆 2 =  −5.2525 Asymptotically stable  

 

As indicated in Table 2, there are five steady states with their corresponding eigenvalues. For 
𝐸1(0, 0), both eigenvalues have positive real roots, resulting in an unstable pattern. Whereas for the 
steady states 𝐸2(0, 100) and 𝐸4(118.352, 0.347), the eigenvalues indicate an opposite sign. This leads 
to an unstable saddle pattern. For the steady states 𝐸3(250, 0) and  𝐸5(8.973, 75.571), the 
eigenvalues have negative real roots. As a result, the asymptotically stable pattern is obtained. 
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Figure 1: The phase portrait of fish species 𝑋 and 𝑌 with parameter values presented in Table 1.  

The phase portrait of  𝑋 and 𝑌 species with a competition coefficient of 𝛼 = 0.015 are plotted using 
Matlab software, as shown in Figure 1. The steady state 𝐸1(0, 0) exhibits an always unstable pattern, 
with trajectories leading from 𝐸1(0, 0) to the stable steady states 𝐸3(250, 0) and 𝐸5(8.973, 75.571). 
While the steady states 𝐸3(250, 0) and 𝐸5(8.973, 75.571) show a continuously stable pattern. The 
steady state 𝐸4(118.352, 0.347) demonstrates an eternally unstable saddle pattern, with trajectories 
shifting and moving away from the steady state. Nevertheless, if we increase the competition 
coefficient for 𝐸2(0, 100), there are switches in system stability, which will be discussed in the 
following section. 

3.2 Numerical Bifurcation Analysis  

With the help of XPPAUT numerical tools, the parameter variation technique is performed for 
numerical bifurcation analysis. The model system (3) was evaluated, and bifurcation diagrams were 
plotted by using numerical software, XPPAUT. For simplicity, the parameters were set to  𝛽 =
0.01, 𝑟1 = 3.7, 𝑟2 = 1.2, 𝛾1 = 0.0004, 𝛾2 = 0.003, 𝐾 = 250, 𝐿 = 100 and the competition parameter 𝛼 
is varied from 0.036 to 0.038. Figures 2(a) and 2(b) indicate the switches steady state, 𝐸2. The 
horizontal solid red and black lines represent the stable and unstable constant steady state, 
respectively. The dashed green vertical line indicates the transcritical bifurcation point at 𝛼 = 0.037. 
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Figure 2: Bifurcation plot of competition fishery system (3) with respect to competition parameter α. 

The transcritical bifurcation point demonstrates how the system stability switches for the population 
species. Using the numerical bifurcation analysis, we observed that the coefficient of competition 
changes its behaviour in various ways. When the competition parameter 𝛼 is set to 0.0365, the steady 
state 𝐸2(0, 100) indicates an unstable saddle node. However, as the competition parameter 𝛼 =
0.0375 crosses the transcritical bifurcation point, the steady state 𝐸2(0, 100) switched from an 
unstable saddle to an asymptotically stable. The summary of stability and bifurcation analysis results 
is shown in Table 3. 

Table 3:  The stability and bifurcation analysis result with respect to competition parameters 𝛼 

Bifurcation 

parameters 

Critical points Eigenvalues Stability results 

𝛼 = 0.0365 𝐸2 = (0,100) 𝜆1  =  0.05 , 𝜆2  =  −1.2 Unstable saddle node 

𝛼 = 0.037 Transcritical bifurcation point 

𝛼 = 0.0375 𝐸2 = (0,100) 𝜆1 =  −0.05 , 𝜆2  =  −1.2 Asymptotically stable node 

 

The phase portrait in Figure 3(a) depicts the first region (i) in Figures 2(a) and 2(b) before crossing 
the transcritical bifurcation point. In these regions, the steady state 𝐸2 exhibits an unstable saddle 
pattern. Meanwhile, the phase portrait in Figure 3(b) depicts the second region (ii) in Figures 2(a) 
and 2(b) after crossing the transcritical bifurcation point. We can see the shifting in system stability 
pattern in these regions, where 𝐸2 shifted to an asymptotically stable pattern. 
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Figure 3: The phase portrait of species 𝑋 and 𝑌 with bifurcation parameter (a) α = 0.0365 and (b) α = 0.0375. 

3.3 Dynamical Behavior of Species Interaction as Competition Parameter Increases  

In this section, four different competition parameter values are selected to observe the dynamics of 
the population as the competition parameter increases. The steady state 𝐸5(𝑥 ∗, 𝑦 ∗) has been 
selected since it is always stable in the parameter range of interest. Hence, Table 4 summarizes the 
findings. 

Table 4:  The critical points for the chosen values of competition parameter α   

Competition parameter values 𝐸5 (𝑥 ∗, 𝑦 ∗) 

𝛼 = 0.0362 (3.355, 89.681) 

𝛼 = 0.0367 (3.004, 90.686) 

𝛼 = 0.0373 (2.439, 92.337) 

𝛼 = 0.0377 (1.718, 94.509) 

 

Table 4 illustrated that as the competition parameter rises, species 𝑋 declines while species 𝑌 
increases. Because they occupy the same niche, both species will face competition. As a result, one 
species will win while the other will lose. This scenario explains why the number of species 𝑋 
decreases as the competition parameter increases, owing to the increased competition for survival. 
As a result, species 𝑌 has survived, while species 𝑋 will become locally extinct. 

Next, the time series graphs are plotted in Maple in order to analyze the fundamental patterns and 
behaviours of the species population over time. Figure 4 depicts a time series plot of the species 𝑋 
and 𝑌 as competition parameter 𝛼 rises. The dynamics of species 𝑋 and 𝑌 are represented by the blue, 
red, green, and black curves as the competition parameters are 𝛼 = 0.0362, 𝛼 = 0.0367, 𝛼 = 0.0373 
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and 𝛼 = 0.0377. It is discovered that the population of species 𝑌 gradually grows at first until 
reaching a maximum and achieving stable steady state. This situation occurs since the impact of 
species 𝑌 on species 𝑋 is more significant than the impact of species 𝑌 on species 𝑋.  

Figure 4: The time series plot of species 𝑋 and 𝑌 with varying competition parameters 𝛼. 

4 CONCLUSION 

The competition coefficients involving two species in a population with toxicity have been considered 
and discussed in this study. The system's behavior was easily analyzed using a one-parameter 
bifurcation analysis based on this model. Our findings suggest that different rates of competition 
coefficient can influence the dynamical behavior of both species. The competition coefficient 
parameter 𝛼 was treated as a bifurcation parameter since it is an essential parameter that influences 
the competition interaction model. As the bifurcation parameter exceeds the transcritical bifurcation 
point, the stability of steady states, 𝐸2 switches. We also discovered that as the bifurcation parameter 
𝛼 increases, species 𝑋 decreases while species 𝑌 increases. This phenomenon indicates that species 
𝑋 will become extinct locally while species 𝑌 will survive. Competition is not a static operation. 
Environmental disturbances, for example, can disrupt the ecosystem and eliminate the competitor's 
advantage. The model presented in this work is primarily concerned with what happens in 
population species and the stability of those populations when the competitive coefficient for each 
species is varied. Therefore, the bifurcation review of three toxic species' stability and dynamic 
activity is proposed for future studies. 
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