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Pencirian Dan Sifat Sifat Komposit Polipropilena / Getah Akrilonitril Butadiena 

Kitar Semula / Tempurung Kelapa Sawit  

ABSTRAK 

Termoplastik elastomer yang berasaskan polipropilena / getah akrilonitril butadiena kitar 

semula yang diisi oleh tempurung kelapa sawit telah dihasilkan. Semua sampel ujian 

disediakan dengan menggunakan mesin pencampur  dua kisar giling yang dipanaskan 

pada suhu 180 oC dengan kelajuan 15 putaran setiap minit dengan jumlah masa 

pencampuran selama 9 minit. Semua sampel yang telah dicampurkan itu kemudian 

dibentuk menggunakan acuan mampatan pada suhu 180 oC dan diikuti dengan penekanan 

sejuk dengan jumlah masa selama 12 minit. Saiz partikel bagi PKS dan NBRr yang 

digunakan di dalam kajian ini adalah 100-200 µm. Kesan daripada pemuatan NBRr dan 

PKS sebagai siri kawalan telah disediakan dan diselidik. Kajian untuk sifat-sifat komposit 

tertumpu kepada penyelidikan kesan agen penserasi seperti maleik anhidrida tercantum 

polipropilena (PPMAH) dan getah trans-polioktilena (TOR) dan juga ɤ-MPS sebagai 

agen pengkupel. Sifat-sifat mekanikal, pencirian morfologi, analisis FTIR, sifat-sifat 

terma, penyerapan air dan tingkah laku pembengkakan telah dikaji. Sifat-sifat mekanikal 

dan terma bagi semua komposit yang dirawat telah meningkat. Sifat-sifat yang lebih baik 

seperti tensil, kestabilan terma, penghabluran, penyerapan air dan tingkah laku 

pembengkakan komposit telah ditunjukkan oleh PPMAH dibandingkan dengan 

penserasian TOR. Pengubahsuaian rawatan dari pengisi PKS dengan menggunakan ɤ-

MPS telah meningkatkan keserasian kimia, perlekatan antara muka dan pengagihan 

tekanan diantara pengisi PKS dan matrik PP/NBR yang menghasilkan sifat yang lebih 

baik.  
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Characterization And Properties Of Polypropylene / Recycled Acrylonitrile 

Butadiene Rubber / Palm Kernel Shell Composites 

ABSTRACT 

Thermoplastic elastomer composites was developed by using polypropylene (PP) / 

recycled acrylonitrile butadiene rubber (NBRr) filled by palm kernel shell (PKS). All test 

samples were prepared by using heated two roll mill machine at temperature of 180 °C at 

a speed of 15 rpm with the total mixing time of 9 minutes. All the compound samples 

were shaped using compression moulding at temperature of 180 °C and followed by cool 

pressing for total time of 12 minutes. The particle sizes of the PKS and NBRr used in this 

study were 100-200 µm. The effect of NBRr loading and PKS loading were prepared and 

investigated as control series. The studies of composites properties were aimed to 

investigations of the effects of compatibilizer such as polypropylene maleic anhydride 

(PPMAH) and trans-polyoctylene rubber (TOR) and also ɤ-MPS as a coupling agent. The 

mechanical properties, morphological characterization, FTIR analysis, thermal 

properties, water absorption and swelling behaviour were investigated. Better properties 

such as tensile, thermal stability, crystallinity, water absorption and swelling behaviour 

of composites showed by PPMAH compared with TOR compatibilization. The treatment 

modification of PKS filler by using ɤ-MPS have improved the chemical compatibility, 

interfacial adhesion and stress distribution between PKS filler and PP/NBRr matrix which 

results in better properties.  
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CHAPTER 1 : INTRODUCTION 

1.1 Research Background 

Recently thermoplastic elastomer composites (TPE) have gained much attention 

from researchers to produce a new polymer composites materials. Basically, 

thermoplastic elastomer composites can be made by combining a thermoplastic polymer 

with a suitable elastomer material. It produces typical properties of elastomer materials 

but it can still be processed like thermoplastics. The main advantages of the TPE are 

simple compounding, easy recycling, reprocessable and low cost (Kmetty, Bárány, & 

Karger-kocsis, 2012; Sae-oui et al., 2010).  

Thermoplastic matrix materials can be classified as polyolefins (polyethylene, 

polypropylene), vinylic polymers (polyvinyl chloride (PVC), polyamides, polyacetals, 

polyphenylenes, polysulphone and polyetheretherketone (PEEK), polystyrene, 

polycarbonate, polyether imide and so on (Akovali, 2001; Jose et al., 2012). One of the 

most commonly used thermoplastic is polypropylene. Polypropylene (PP) is synthesized 

by the polymerization of propylene, a monomer derived from petroleum products (Anne-

Marrie & Joey, 2004). PP provides some advantages such as good resistance of moisture 

uptake, good chemical resistance and high thermal stability. However, the usage of 

polypropylene has been reduced due to the expensive cost of the petroleum derived 

products and also environmental hazard.  
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Addition of elastomer materials into the thermoplastic composites may improve 

the properties of the resulting composites. Acrylonitrile butadiene rubber (NBR) is one 

of the elastomeric materials used in the thermoplastic elastomer composites.  NBR is 

commonly used in a wide variety of application areas requiring oil, fuel and chemical 

resistance. NBR has an excellent capability to resist in oil, water, alcohols and chemical. 

NBR is used in many aplications such as belt conveyor, hydraulis hose, roll covers, oil 

field packers, and seals for all kinds of plumbing and appliance application (Santiagoo, 

Ismail, & Hussin, 2011). 

Nowadays, the recycling of waste materials has become very important due to the 

environmental reasons. Consumption of recycled acrylonitrile butadiene rubber (NBRr) 

or known as nitrile rubber gloves has increased rapidly in Malaysia. Since this country is 

one of the world’s largest of exporter and producer of nitrile rubber gloves. There is high 

demand of the nitrile rubber gloves (NBRr) particularly due to health awareness of the 

world population and consumption from industries. Unfortunately, NBRr is one of the 

non degradable waste materials. Discarding the NBRr and burning it into the landfill 

space are not recommended because they may cause environmental problems. Research 

on recycling of nitrile rubber gloves has been conducted in order to solve the 

environmental issue and also to create a value added of the waste materials (Ahmad, 

Ismail, & Rashid, 2016).  

Recycled nitrile rubber gloves made of synthetic rubber that contain no latex 

proteins, have excellent resistance to wear and tears, resistance to many types of 

chemicals. The nitrile rubber gloves are commonly used because of their high degree of 

flexibility and excellent solvent resistance. Furthermore, nitrile rubber gloves have a good 
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resistance to many oils and some acids, making them a good choice for many 

manufacturing environments (Ridhwan et al., 2014). 

Properties of thermoplastic elastomer composites can be improved by the addition 

of natural filler into the composites. Nowadays, natural filler composites have received 

increasing attention compared to synthetic fiber composites which may be caused of the 

advantages of natural filler such as biodegradability, renewability, low price, low density, 

problem free disposal and less abrasiveness to equipment. Addition of natural filler such 

as palm kernel shell, kenaf core, empty fruit bunch, sagoo, sisal, coir, and hemp into 

composites can improve the properties of the composites. However, there is a main 

disadvantage of the natural filler composites that is the incompatibility between the 

hydrophilic natural fillers and hydrophobic polymer matrix. The incompatibility leads to 

poor adhesion between the fillers and polymer matrix, poor wettability, the difficulties of 

homogeneous mixing and easy to be agglomerate during processing (Anuar & Zuraida, 

2011; El-shekeil et al., 2014; Yeh et al., 2015).  

However, there is limited research on using palm kernel shell as a natural filler to 

develop a new composite based on the polypropylene (PP) and recycled acrylonitrile 

butadiene rubber (NBRr) as the thermoplastic elastomer natural filler composites. Hence, 

this study is carried out to evaluate the mechanical, thermal and morphological properties 

of PP/ NBRr/ PKS composites. 
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1.2 Problem Statement 

Combinations of PP/NBRr polymer matrix using PKS natural filler looks to be an 

attractive way to obtain a thermoplastic elastomer with good oil resistance, good 

mechanical properties and easy processability. However, this combinations are found to 

be highly incompatible. The hydrophobicity of polymer matrix and hydrophilicity of 

natural filler are the major reasons of incompatibility between them. The incompatibility 

leads to poor adhesion between the fillers and polymer matrix, poor wettability, the 

difficulties of homogeneous mixing and easy to be agglomerate during processing (El-

shekeil et al., 2014).  

Another problem using natural filler in composites is the higher moisture uptake 

which affects the durability of the composites. As the natural filler absorbs moisture, the 

composites swell and affect the surrounding matrix, which start to crack and weaken filler 

matrix interface interactions. It is therefore necessary to do the treatment in order to 

improve the water resistance of fillers and promote interfacial adhesion. The performance 

of fillers is critical to obtain the improved physical and mechanical properties of the 

resulting composites. Many researchers have developed various methods in thermoplastic 

elastomer composites such as compatibilizing agent using polypropylene maleic 

anhydride (PPMAH), trans-polyoctylene rubber (TOR) and coupling agents using silane 

to improve the filler/matrix adhesion. 

Many researchers were investigated polypropylene maleic anhydride (PPMAH) 

and trans-polyoctylene rubber (TOR) as compatibilizer in the TPE composites. It was 

found that better tensile properties, thermal and swelling properties of the resulting 
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composites. The compatibilizing agent can promote better matrix/filler interaction due to 

the anhydride groups of PPMAH may react with the surface hydroxyl groups on natural 

fillers. The chemical modification using silane coupling agent have functions to create a 

chemical bridge between filler and matrix at the interface.  

1.3 Objectives of Study 

The main focus of this study is to develop a thermoplastic elastomer (TPEs) filled 

natural filler composites using polypropylene, recycled acrylonitrile butadiene rubber and 

palm kernel shell. It is also to find a solution to the existing problem of abundant nitrile 

rubber gloves and palm kernel shell as biomass waste. The main objectives of the study 

are: 

1. To study the effects of recycled acrylonitrile butadiene rubber (NBRr) loading 

using polypropylene maleic anhydride (PPMAH) and trans-polyoctylene rubber 

(TOR) as compatibilizer on mechanical, morphological, thermal, water absorption 

and swelling behaviour properties of PP/NBRr/ PKS composites. 

2. To study the effects of palm kernel shell (PKS) loading using γ-

methacryloxypropyltrimethoxysilane (γ-MPS) as coupling agent on mechanical, 

morphological, thermal, water absorption and swelling behaviour properties of 

PP/NBRr/PKS composites. 

3. To study the effects of thermal aging on mechanical properties of PP/NBRr/PKS 

composites using polypropylene maleic anhydride (PPMAH) and trans-

polyoctylene rubber (TOR) as compatibilizer and using γ-

methacryloxypropyltrimethoxysilane (γ-MPS) as coupling agent .  
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