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Pembangunan dan Pencirian Hibrid Gentian Rumput Gajah/Kaca Epoksi 

Komposit  

ABSTRAK 

 

Permasalahan alam sekitar yang serius sejak kebelakangan ini menyebabkan 

penyelidik terdorong untuk menyiasat penggunaan bahan yang mampan sebagai 

pengganti untuk komposit polimer yang diperbuat daripada gentian sintetik seperti kaca, 

karbon, dan aramid. Oleh itu ia telah meningkatkan minat penyelidik dalam 

pembangunan komposit daripada gentian semula jadi. Walau bagaimanapun, komposit 

daripada gentian semula jadi mempunyai beberapa kekurangan seperti ketahanan yang 

lemah  dalam penyerapan kelembapan dan mempunyai kekuatan hentaman yang rendah. 

Bagi meningkatkan lagi sifat komposit daripada  gentian semula jadi,  gentian sintetik 

seperti kaca, karbon, dan aramid dikombinasikan  dengan gentian semulajadi. Sifat 

mekanik hibrid gentian rumput gajah/kaca epoksi komposit dan, ketahanannya terhadap 

suhu tinggi dan pendedahan kelembapan telah dikaji dan disiasat. Gentian 5% alkali-

terawat gentian rumput gajah telah menunjukkan tegasan tengangan yang maksimum. 

Hibrid komposit dengan 5% alkali-terawat gentian rumput gajah mempunyai tegangan 

dan kekuatan lenturan yang paling tinggi. Pemerhatian terhadap kesan permukaan hibrid 

komposit dengan gentian rumput gajah yang tidak terawat menunjukkan kurang 

permukaan yang rosak. Penyerapan kelembapan hibrid rumput gajah/kaca epoksi 

komposit meningkat dengan peningkatam masa rendaman.. Apabila suhu menghampiri 

Tg, pada > 60 ° C, gentian akan terlekang dari ikatan matriks dan seterusnya 

mengurangkan tegangan dan kekuatan lenturan bahan. Kajian ini dijangka menyediakan 

bukti untuk menyokong pembangunan dan penggunaan bahan tersebut. 
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Development and Characterisation of Hybrid Napier/Glass Fibre Reinforced 

Epoxy Composites 

ABSTRACT 

 

Owing to serious environmental concerns in recent years, researchers have been 

driven to investigate the use of sustainable materials as a substitute for common 

polymer composites manufactured with synthetic fibres, such as glass, carbon, and 

aramid. This has generated increased interests in the development of natural fibre-

reinforced composites. However, natural fibre composites have some limitations such as 

poor resistance to moisture absorption and possess lower impact strength. To further 

enhance the properties of natural fibre composites, reinforcements such as glass, carbon, 

and aramid fibres are hybridized into natural-fibre composites. The mechanical 

properties of hybrid Napier/glass fibre reinforced epoxy composites and, their durability 

under elevated temperatures and moisture exposure were characterised and investigated. 

The 5% alkali-treated fibre had achieved the maximum ultimate tensile stress of single 

fibre test. The hybrid composites with 5% alkali-treated Napier fibres exhibited the 

greatest tensile and flexural strengths. Observing the impacted surfaces, it can be 

noticed that the hybrid composites with untreated Napier fibres present less damage 

area. The moisture absorption of the hybrid Napier/glass fibres reinforced epoxy 

composites increased with the water-immersion period of the samples. As the 

temperature approached Tg, at >60 °C, the fibre would deboned from the matrix and 

consequently reduced the tensile and flexural strength of the material. This study is 

expected to provide evidence to support the development and application of this 

material.

 
 

 
 

 
 

 
 

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t 

 



1 

 

CHAPTER 1  

INTRODUCTION 

  Overview 1.1

The current growth in environmental awareness has generated increasing interest in 

the use of natural fibres as alternative reinforcement materials for polymer composites. 

This is largely owing to their low environmental impact, low cost, and relatively good 

specific properties. Scientists have been striving to develop biodegradable composites 

using renewable agro-based materials (Kommula, Kanchireddy, Shukla, & Marwala, 

2014). Natural fibres derived from plants demonstrate great potentials for use in plastic, 

automotive, and packaging industries because of their excellent characteristics such as 

low density, high specific stiffness, good mechanical properties, biodegradability, eco-

friendliness, toxicologically harmless effect, good thermal and their acoustic insulation 

(Mohanty, Wibowo, Misra, & Drzal, 2004; V. K. Thakur, Thakur, & Gupta, 2013b). In 

addition, these cellulosic fibres can reduce the overall material costs compared to the 

starting polymer (V. K. Thakur, Thakur, & Gupta, 2013a).  

Comprehensive reviews conducted by a number of publications (Bongarde & 

Shinde, 2014; He et al., 2015; V. K. Thakur, Thakur, & Gupta, 2014; V. K. Thakur & 

Thakur, 2014, 2015; F. Wang, Shao, Keer, Li, & Zhang, 2015) had outlined the 

differences found in natural fibres with regards to their mechanical properties and their 

applications. Several authors documented the use of natural fibres such as bamboo (F. 

Wang et al., 2015), flax (Moothoo, Allaoui, Ouagne, & Soulat, 2014), coir (Varma, D. 
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S. Varma, M. Varma, 1986), arundo donax (giant reed) (Fiore, Scalici, & Valenza, 

2014), okra (De Rosa, Kenny, Puglia, Santulli, & Sarasini, 2010), jute (Pal, 1984; 

Prashant, 1986), wheat straw (Lawther, Sun, & Banks, 1996; Sun, Lawther, & Banks, 

1996) and alfa (Paiva, Ammar, Campos, Cheikh, & Cunha, 2007) as reinforcements in 

composite materials. 

Nevertheless, there are concerns regarding the attributes of natural fibres such as 

their hydrophilic nature, high moisture absorption, poor reactivity, and poor 

compatibility with polymeric matrices, all of which influence their mechanical 

properties (Indran, Raj, & Sreenivasan, 2014; Obi Reddy, Uma Maheswari, Shukla, 

Song, & Varada Rajulu, 2013; M. K. Thakur, Gupta, & Thakur, 2014). The hydrophilic 

nature of natural fibre is known to produce weak interfacial adhesion in polymer-matrix 

composites (Girisha & Srinivas, 2012). The type of natural fibre can also affect the 

biological performance of the composites, for example, a composite manufactured from 

abaca fibre has a much greater moisture content compared to flax reinforced composites 

(Faruk, Bledzki, Fink, & Sain, 2012). These problems can be rectified through 

modifications such as alkali treatment to enhance the interfacial adhesion between the 

natural fibres and composite  matrices, in addition to enhancing the mechanical, 

physical, and thermal properties of the fibres (Li, Tabil, & Panigrahi, 2007). Other 

modifications during acetylation can modify the surface of the fibres and enhance their 

hydrophobicity (Faruk et al., 2012).  

Napier grass fibre, also scientific name known as Pennisetum purpureum is 

composed of 46% cellulose, 34% hemicellulose, and 20% lignin (Reddy, Maheswari, 

Shukla, & Rajulu, 2012). The purpose of the alkali treatment is to remove the 

hemicelluloses, split the fibres in the fibrils, and produce a closely packed cellulose 

chain owing to the release of the internal strain, which consequently improves the 
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mechanical properties of the fibre (Bledzki & Gassan, 1999). Following the alkali 

treatment, the fibrillation of the fibres also increases the effective surface area available 

for wetting by the resin and enhances the bonding between the fibre-matrix interfaces 

within the polymer composites. The alkali treatment also breaks the hydrogen bonds 

and increases the number of free hydroxyl groups of the fibre, thus increasing the fibre 

reactivity (Dipa Ray, Sarkar, Basak, & Rana, 2002).  

The alkali treatments of various lignocellulosic fibres such as jute, hemp, kapok, 

sisal (Mwaikambo & Ansell, 2002), banana (Zuluaga et al., 2009), coir (Gu, 2009b), 

and Napier grass (Reddy, Maheswari, Reddy, & Rajulu, 2009b) have been previously 

investigated. Haameem et al. (2014) recently determined that the maximum ultimate 

tensile stress of Napier single fibres was achieved with 10% alkali treatment. However, 

this was contradictory to the results of Reddy et al. (2012) which determined that the 

maximum ultimate tensile stress of Napier fibre was achieved with 5% alkali treatment. 

The modulus of jute fibres improved by 12%, 68 %, and 79% following 4, 6, and 8 h of 

alkali treatments, respectively. The tenacity of the fibre improved by 46% following 

alkali treatments for 6 and 8 h and the breaking strain was reduced by 23% following an 

8 h treatment (D. Ray, Sarkar, Rana, & Bose, 2001). Liu et al. (2006), Rao et al. (2010) 

and Thakur et al. (2013b) all demonstrated that the natural fibres exhibited great 

potential for use as an alternative to artificial glass and carbon fibres during the 

production of thermosetting or thermoplastic composites. The incorporation of two or 

more types of fibre into a single matrix has led to the development of hybrid 

composites. The performance of these hybrid composites are determined by many 

factors, such as the matrix, length and shape of individual fibres, fibre–matrix interface 

bonding, and volume fraction of the natural/synthetic fibres (Cicala et al., 2009; Júnior, 

Júnior, Amico, & Amado, 2012; Mishra et al., 2003). Previous studies had studied the 
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effect of varying the amount of fibre loading on the mechanical properties of hybrid 

composites consisting of natural fibres and glass fibre. These included bamboo/glass 

(Rao, Kumar, & Reddy, 2011), sisal/glass (Mishra et al., 2003), kenaf/glass (Atiqah, 

Maleque, Jawaid, & Iqbal, 2014), okra/glass(Sule, 2014) and jute/glass (Braga & 

Magalhaes Jr., 2015) hybrid composites. Mishra et al. (2003) reported that the water 

uptake of hybrid composites is lower than that of un-hybridized composites (Mishra et 

al., 2003). Moreover, Ahmed and Vijayaragan (2008) revealed that the properties of jute 

composites can be considerably improved by the incorporation of glass fibres in the 

form of extreme glass plies. These studies concluded that superior properties were 

exhibited by the hybrid-reinforced composites, which consisted of natural fibres and 

synthetic fibres. 

Behaviours such as moisture absorption and mechanical degradation of polymers 

and polymeric composites have been comprehensively investigated (Demirkoparan, 

Pence, & Wineman, 2010; Demirkoparan & Pence, 2007a, 2007b; Tsai, Pence, & 

Kirkinis, 2004; Venkateshwaran, ElayaPerumal, Alavudeen, & Thiruchitrambalam, 

2011). The mechanical properties and moisture absorption of these materials were 

greatly influenced by the length of the fibres and the hybridisation ratios used for the 

reinforcement (Sule, 2014). Phan Braga and Magalhaes (2015) reported that jute/glass 

composites that contained a greater proportion of jute fibre absorbed more water than 

those that contained a greater proportion of glass. Khalid et al. (2007) analysed the 

effect of hybridisation on the mechanical and physical properties of oil palm empty fruit 

bunch (EFB)/glass-polyester hybrid composites (Khalil, Hanida, Kang, & Fuaad, 2007). 

The study showed that the hybrid composites exhibited superior properties to the EFB-

polyester composites. Recently, it had been established that Napier grass fibres can 

potentially be used as a reinforcement material within polymer composites  (Reddy, 
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Maheswari, Reddy, & Rajulu, 2009a; Reddy et al., 2012; Ridzuan, Abdul Majid, 

Afendi, Kanafiah, & Nuriman, 2015; Ridzuan, Abdul Majid, Afendi, Azduwin, et al., 

2015). 

Despite their great potential, compared with synthetic fibres, such as glass and 

carbon, natural fibres have some limitations when used as reinforcement materials, such 

as they have lower modulus and strength, as well as higher moisture absorption. To 

overcome these drawbacks, potential solutions have been suggested, such as 

hybridisation with synthetic fibres and chemical modification of the natural fibres. 

Hybrid composites are materials that are fabricated by combining two or more different 

types of fibres within a common matrix. Hybrid composites are more advanced than 

other fibre-reinforced composites and have a wider range of potential applications. The 

properties of the hybrid composites are dependent on the fibre content, fibre orientation, 

fibre length, bonding between the matrix and fibre, and the arrangement of the fibres 

within the laminates. Previous studies on natural-synthetic fibre hybrid composites had 

primarily focused on reducing the use of synthetic fibres (Assarar, Zouari, Sabhi, Ayad, 

& Berthelot, 2015; Joshi, Drzal, Mohanty, & Arora, 2004; Kumar, Arumugam, Dhakal, 

& John, 2015). A previous study had described the potential advantages associated with 

natural-synthetic fibre hybridisation (M. Jawaid & Abdul Khalil, 2011). 

The mechanical properties of a kenaf-aramid hybrid composite were examined by  

(Bakar, Hyie, Ramlan, Hassan, & Aidah, 2013). They studied the potential hybridisation 

of the long kenaf fibres with Kevlar. The mechanical properties of the woven jute/glass 

fabric hybrid composites were examined by (K. S. Ahmed, Vijayarangan, & Kumar, 

2007). The mechanical properties of sisal fibre reinforced polyester composites were 

improved by adding carbon (Noorunnisa Khanam et al., 2010).  Hani et al. (2011) 

investigated hybrid (woven coir/ Kevlar) composites and found that coconut coir could 
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