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Kesan Kelajuan Kepala Silang ke atas Sifat-Sifat dan PenyerapanTenaga bagi Al/PU-

PTFE Komposit Busa Terapit 

 

 

ABSTRAK 

 

 

Kajian ini mengkaji hubungan antara kelajuan kepala silang dan penyerapan tenaga bagi 

komposit busa terapit Al/PU/PTFE. PU busa disediakan dengan menggunakan poliol yang 

berasaskan minyak kelapa sawit dan isosianat (MDI) dengan nisbah 1:1.1. Tujuan 

penambahan pengisi 2% PTFE adalah untuk memperbaiki sifat-sifat busa seperti rintangan 

apabila beban dikenakan ke atas struktur komposit mengikut kekukuhan, kekuatan, 

kestabilan haba dan sifat-sifat struktur lain. Bagi komposit busa PU/PTFE dan komposit 

busa terapit, ciri lenturan dan tenaga penyerapan dikaji dengan menggunakan kelajuan 

kepala silang yang berbeza (5, 10, 15 dan 20 mm/min). Selain itu, penggunaan PTFE dalam 

PU komposit busa dapat dilihat melalui X-Ray, DSC, TGA dan FTIR. PU/PTFE telah 

menunjukkan indeks penghabluran yang lebih rendah berbanding busa PU kerana PTFE 

mempunyai susunan molekul yang sangat lemah . Keputusan DSC menunjukkan bahawa 

penambahan PTFE menunjukkan kestabilan haba yang paling tinggi walaupun dipanaskan 

melebihi takat lebur kristal pada 327 
o
C manakala PTFE juga menunjukkan keputusan 

rintangan haba yang lebih tinggi bagi TGA. Ini bermaksud, PU/PTFE busa komposit 

mengambil masa yang lebih lama untuk penguraian sepenuhnya berbanding PU busa. 

Tambahan pula, pada kelajuan sederhana bagi kepala silang (10 dan 15 mm/min) 

menunjukkan kekuatan lenturan dan modulus lenturan yang lebih tinggi bagi PU busa dan 

PU/PTFE samaada dalam keadaan busa komposit atau busa terapit. Sementara itu, 

peningkatan penyerapan tenaga bagi busa PU dan PU/PTFE komposit busa adalah 

disebabkan oleh kepala silang yang lebih rendah dan  hal ini yang boleh melambatkan 

retakkan berlaku. Dalam busa terapit, Al yang bersifat kemuluran digunakan adalah untuk 

meningkatkan penyerapan tenaga dan kekuatan busa terapit. 
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Effect of Cross Head Speed on Properties and Energy Absorption of Sandwich Al/PU-

PTFE Foam Composite 

 

 

ABSTRACT 

 

 

This study to investigates the relations between cross head speed and the energy absorption 

of sandwich Al/PU/PTFE foam composite. The PU foam was prepared using the palm oil 

based polyol and isocyanate (MDI) with ratio of 1:1.1. The purpose addition of 2% PTFE 

filler for improve the properties of the foam such as resistance when load applied on 

composite structure according to stiffness, strength, thermal stability and other structural 

properties. The flexural properties and energy absorption was study by using different cross 

head speed (5, 10, 15 and 20 mm/min) on PU/PTFE foam composite and sandwich foam 

composite. Moreover, the effect of PTFE on X-Ray diffraction, DSC, TGA and FTIR in PU 

foam composite were also investigated. It was found that PU/PTFE showed the lower 

crystallinity index as compared to PU foam due to the poor arrangement of PTFE. The 

DSC results indicate that adding of PTFE gives the higher heat stability even heated above 

its crystalline melting temperature of 327 
o
C while PTFE also shows better thermal 

resistance than PU foam for TGA result. That means, PU/PTFE foam composite takes 

longer time to fully degrade than PU foam. Furthermore, the medium crosshead speed (10 

and 15 mm/min) shows the higher flexural strength and flexural modulus for PU foam and 

PU/PTFE either in composite or sandwich foam. Meanwhile, the energy absorption of PU 

and PU/PTFE was increases due the lower cross head speed and this can delay the crack 

failure. In sandwich foam, the ductility of Al sheet used to increase the energy absorption 

and improved the strength of sandwich foam. 
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depend on low apparent density, cheap and flexibility design which is can be easily 

molded in complex geometric parts. His research also proved that, PU foams also can 

reduce the sound absorption efficiently. 

 

The preparation of PU foam consists of two reactions such as isocyanate-polyol 

(or known as the gelling one which forms the backbone urethane group) and isocyanate-

water reaction (or known as the blowing). The isocyanate-polyol reaction leads to the 

formation of a crosslinked polymer, since polyols with several hydroxyl groups are used 

either by reaction of urethane group with an isocyanate group. The other one reaction is 

isocyanate-water reaction that forms amine and carbon dioxide gas in the form of 

bubbles from decomposition of carbamic acid (Dworakowska et al., 2014). The 

advantages of rigid PU foam such as better dimensional stability, good adhesion to 

facing materials and mechanical strength at low densities and low thermal conductivity 

due to blowing agent and fine closed cell structure (Randall & Lee, 2002). 

 

According by Avalle et al., (2001) have described the polymeric foams undergo 

large compressive deformations and absorb considerable amounts of specific energy. 

Energy is dissipated through the cell bending, buckling or fractures but the stress is 

generally limited by the long and flat plateau of the stress-strain curve. For impact 

testing, the rigid polyurethane foam as core material in sandwich structure can absorb 

higher energy in closed cell morphology compared to open cell morphology (Saha at al., 

2008).  

 

Based on the research study, the flexural testing of PU foam with different cross 

head speed is to identify the interaction of flexural stiffness and absorbing energy 
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without weight penalty. Loading speed is experimental parameter which can be altered 

to study the energy absorption effect from the different cross head speed to the 

composite foam. The loading speed refers to the cross-head velocity which has direct 

proportionality with strain rate. The composite foam that is shows the increases of cross 

head speed which bring about a resulting decreases in energy absorption (Dash et al., 

2014). 

 

The function of filler is to enhance performance and reduce manufacturing costs 

compared to a reinforcement that gives much stiffer and stronger than the polymer by 

increasing modulus and strength of material (Ajayan et al., 2003). The PTFE was 

choosen in this research study because PFTE can improve the properties of foam 

materials such as foam density and modulus properties. PTFE also possesses many 

outstanding properties such as high melting point, marked solvent resistance, low yield 

stress, and low surface tension. Other properties of PTFE are non-aging, chemical 

inertness, exceptional dielectric properties, heat resistance, non-stick and weather-

resistance properties (Mark, 1999). PTFE is usually used in application such as a 

coating for cookware, gaskets, seals and hoses. 

 

1.2 Problem Statement 

 

From the previous study, the effect of impact velocity and geometry on the 

deformation and energy absorbed has been discussed by Shim et al., 2000. This studied 

focus on the impact response of crushable polyurethane foam, particularly with regard 

to the deformation induced and the energy dissipation characteristics. This result shows 

the increase in energy absorbed with volume of material crushed, generally increases 
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slightly with impact velocity, signifying a strain-rate effect. However, the effect of 

different cross head speed on the properties and energy absorption of PU foam 

composite foam with PTFE by using flexural testing has not yet been studied. The 

sandwich foam is normally high stiffness but low in weight to withstand the shear 

loading (cross head speed). The addition of PTFE filler is to reduce the subsurface 

deformation and interrupt crack propagation. However, PTFE is high energy impact for 

energy absorption capability that can reduce the force transmitted through in porous 

polymeric foams or other materials. PTFE may recover some or all of its ability to 

absorb another high energy impact because of its high strength and stiffness (Tanaka & 

Kawakami, 1982). 

 

The sandwich panel is influenced by the face sheet strength. This results in 

failure structure such as face sheet indentation, core crushing, visible penetration or 

perforation and invisible internal delamination and debonding (Das et al., 2009). All 

these types of damages will result in strength and stiffness reduction of the structure. On 

the other hand, adhesive failures occur between the adhesive (such as epoxy and 

hardener) that applied between core and skin that considered as weakest point of the 

joint. The failure such as delamination will be happened because too weak adhesively 

bonded between PU foam and aluminium (Al) sheet that are manually applied. The 

solution of delamination failure is by trying to control the thickness of adhesive produce 

the stronger bonding of sandwich foam with high shear strength (Vivek et al., 2010).  
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1.3 Objectives 

 

The objectives of this study are:  

1. To study the effect of cross heed speed on the flexural properties of 

PU/PTFE foam composite. 

2. To study the effect of cross head speed on the energy absorption of 

Al/PU/PTFE foam composite. 

3. To compare energy absorption between PU/PTFE foam composite and 

Al/PU with PTFE composite. 

 

1.4 Scope of Study 

 

The simple formulation to produce rigid PU was using the polyol and 

isocyanates (MDI) according 1:1.1 ratio by weight that using close cell system in the 

open mould technique. The 2% PTFE powder was added as filler in mixture of polyoyl 

and isocynate to withstand the shear stresses set up by the external forces. PTFE also 

make the foam composite become stiff, strong and lightweight structures. Furthermore, 

the aluminium sheet was used as skin while epoxy-hardener mixture that are used as 

adhesive to bond between rigid PU foam and aluminum sheet in order produce the 

sandwich foam.  

 

The scope of this study involve several testings such as flexural testing (ASTM 

D790) with the effect of different cross head speed which is 5, 10, 15 and 20 

mm/minute on the energy absorption of PU foam and PU/PTFE with or without Al 

sheet. This composite foam can be analyzed by using Fourier transform infrared 

 
 

 
 

 
 

 
 

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t 

 



 

6 

 

spectroscopy (FTIR). FTIR is represents the infrared spectrum of absorption and 

emission to identify the functional group of material. The thermal property of 

composites was studied by using Differential Scanning Calorimetry (DSC) and 

Thermaogravimetric Analysis (TGA) testing instrument. The glass transition 

temperature (Tg), crystalline temperature (Tc) and melting temperature of the material 

can be define by using DSC testing. DSC is measure the amount of heat absorbed and 

release during transition with observe the physical change. X-ray diffraction (XRD) was 

used to to study the crsytallinity of PU foam and PU/PTFE foam composite.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 
 

 
 

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t 

 



 

7 

 

CHAPTER 2 

 

LITERATURE REVIEW 

 

 

2.1 Introduction 

 

Polytetrafluoroethylene (PTFE) is a remarkably versatile polymer. It was 

patented in 1937 by DuPont as Teflon; however, it was in the late 1960s that Gore 

discovered that rapidly stretching PTFE under the right conditions created a strong and 

microporous material the expanded of PTFE (Tanaka & Kawakami, 1982). 

 

Previously research was studied about the relationship between the different 

percentage of filler loading and energy absorption of composite foam by using 

compression test. The nanoclay was used as filler with different percentage of filler 

were varied from 0 to 5 percents of weight to produce of nanocomposite polyurethane 

(PU) foam. The water was used as the blowing agent, besides the catalyst and surfactant 

were used to enhance better properties of foam. The energy absorption is evaluated by 

area under stress-strain graph from compression set and the result showed the addition 

of nanoclay filler will be increases the value of energy absorption at 5000 rpm speed 

(Zainuddin et al., 1990). 

 

The nanoclay such as montmorillonite (MMT) a quickly popular nanofiller in 

many polymeric systems as it imparts characteristics such as light weight, improved 

thermal stability, flame retardant and high compressive strength (Chuayjuljit et al., 
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2010; Song et al., 2005). However, hydrophilic nature of MMT causes a weak 

interfacial adhesion with the polymer matrix which is hydrophobic (El-Sabbagh, 2014). 

The purpose of applied PTFE filler in this reseached study according to high molecular 

weight and hydrophobic neither water nor water-containing substances wet PTFE as 

fluorocarbons demonstrate mitigated landon dispersion forces due to the high 

electronegativity of fluorine that produce stronger interaction bonding between PU 

foam and PTFE (Ellis et al., 2001).  

 

Furthermore, from other previous studies from Apostol & Constantinescu, 

(2011) that are studied about energy absorption of rigid PU foam effected on different 

cross head speed The largest comparison speed of loading that are applied from 2 

mm/min up to 1000 mm/min. The result shows increasing the crosshead speed will 

decreases the energy absorption according the decreasing of modulus of elasticity. The 

failure was happened when the cell walls tend to collapse when the compression 

force/strain reaches a critical value. This critical value is noted as the compression 

failure stress/strain (Apostol & Constantinescu, 2011).  

 

2.2 Composite  

 

A composite consisting of different materials is known as laminar composites. 

Composite materials are combination of two elements with very different characteristics 

to provide a material with good structural capability. Wood is one of natural composite 

material consisting cellulose fibers with good strength and stiffness properties. The 

composite can be classified into three categories according to the matrix material such 
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as polymer (or plastic), metal or ceramic. Figure2.1 shows a certain familiar materials 

which can be described as composites (Szycher, 1999). 

 

 

 

 

 

 

Figure 2.1: Relationships between classes of engineering materials showing the 

evolution of composites (Szycher, 1999) 

 

2.2.1 Polymer-Matrix Composites 

 

Polymer matrix composites (PMC) is the combination of plastic (or known as 

the matrix) and fibers orientation (eg., reinforcement). PMC can be group into two 

sections or categories namely, reinforced plastics and advanced composites. Reinforced 

plastics are related to low manufacture cost, commonly consist of polyester resins 

reinforced with low-stiffness glass fibers (E-glass). Advanced composites primarily 

used in the aerospace field, exhibit exceptional strength and stiffness and are 

METALS AND 
ALLOYS

steels, aluminium alloys, 
copper and brasses, 

titanium, etc.

CERAMICS AND 
GLASSES

glass, fired ceramics, 
concrete.

PLASTIC 

resins (epoxies,etc.), 
thermoplastics, 
rubbers, foams, 

textile fibres

Metal-filled plastics 

(particulate and 

fibre fill) 

Metal-matrix composites, 

ceramic-matrix 

composites (including 

ordinary reinforced 

concrete and steel-fibre 

reinforced concrete) 

Fibre-reinforced plastics (including 

GRP, CFRP, glass/PTFE coated 

fabrics), FRP-reinforced concrete. 
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comparatively pricey. Advanced composites that currently used are graphite, high-

stiffness glass (S-glass), aramid, or other organic fibers (Reginald & Stoops, 1985).  

 

The matrix phase of commercial PMC can be classified as either thermoset or 

thermoplastic.  The thermoset resins undergo the curing process whereby the chemical 

reactions will crosslink the polymer chains. Hence, these phenomena connect or join the 

entire matrix together in a three-dimensional network. The three-dimensional 

crosslinked structure tends to have high-temperature resistance, high or steep 

dimensional stability, great resistance to solvents, improving the toughness and 

maximum operating temperatures especially for thermosets (Matthews & Rawlings, 

1999). But nowadays, a thermoplastic is commonly used in manufacturing compared to 

thermoset especially in high volume industries such as the automotive industry. This is 

because thermoplastic is stronger, easily reprocessed and faster to heat and cool a 

material than thermoset that need longer cure time (Akovali, 2001).  

 

The reinforcement PMC provides high strength and stiffness compared to 

ceramic matrix composite (CMC) where the reinforcement is used to enhance the 

fracture toughness. The interphase of PMC is the section in which loads are transported 

between the reinforcement and the matrix. The interaction or relationship between the 

reinforcement and the matrix are depending on strong and firm chemical bonding to 

weak frictional forces. Generally, a strong interfacial bonding between the strong PMC 

will become more rigid but brittle.  Furthermore, the polymeric foams can be flexible, 

semi-flexible (or semi-rigid) and rigid. These different forms depend on the chemical 

constitution and also the rigidity of the resin used as a matrix and the type of 

crosslinking that exists between the molecules (Akovali, 2005). 

 
 

 
 

 
 

 
 

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t 

 



 

11 

 

2.3 Foam  

 

Polymer foams are made of thermoplastics or thermosets. Thermoset foam are 

generally stronger than thermoplastic foam due to this three-dimensional network of 

bonds (cross-linking) and are also better suited to high-temperature applications up to 

the decomposition temperature. However, they are more brittle and their shape is 

permanent which is tend not to be recyclable as a source for newly made plastic The 

foams that dominate the market are made of polystyrene (PS), polyurethane (PU) and 

polyvinyl chloride (PVC). Phenolic foams are also used in a significant volume. Table 

1.1 shows some examples of thermoplastic and thermosetting foams (Japon et al., 2000) 

 

Table 1.1: Some thermoplastic and thermosetting foams (Japon et al., 2000) 

Type of polymer Mode of synthesis Mechanical properties 

PVC Polymerisation Flexible and rigid 

PS Polymerisation Rigid 

PU Polyaddition Flexible and rigid 

Polyisocyanurate Cyclotrimerisation Rigid 

Polyamide Polycondensation Flexible and rigid 

Poyimide Polycondensation Semi rigid 

Phenolics (PF) Polycondensation Rigid 

Amino plasts (UF) Polycondensation Rigid 

Polyurea Polyaddition Flexible and rigid 

Epoxy ring Ring-opening 

polymerisation 

Rigid 
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The foams can be classified either in open cell foam and closed cell foam that 

based on their core structure. The closed-cell foams are generally rigid while open-cell 

foams are more flexible. Figure 2.2 shows that the closed cell produces most of the 

original bubbles or cells remain intact compared to open cell where the bubbles have 

broken and allow air to flow through but the edges of the bubbles are stiff enough to 

retain their shape. The open cell foams is suitable to be used in seat cushions or 

mattresses while closed cell rigid foams are usually used as thermal insulation, for 

example in refrigerators. Self-skinning foams or known as structural or syntactic got a 

dense surface skin that is made by foaming in a cold mold (Tankara, 2011).  

 

 

 

 

  

a) Rigid PU foam (close-cell) b) Flexible PU foam (open-cell) 

Figure 2.2: Closed and open cell structure of PU foams. a) Rigid PU foam (close-cell), 

b) Flexible PU foam (open-cell) ( Tankara , 2011) 
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