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Pengelasan Trafik Rangkaian Berkesan berdasarkan Vital Random Forest bagi
Set Data Dimensi Tinggi

ABSTRAK

Tesis ini mencadangkan serta melaksanakan satu kaedah pengelasan trafik rangkaian yang
berkesan berdasarkan vital random forest (VRF) baru bagi pemeriksaan data berdimensi
tinggi. Kejuruteraan trafik rangkaian merupakan satu daripada teknologi penting yang
memaparkan pertumbuhan yang pantas dalam revolusi teknologi seantero dunia. Pengelasan
trafik rangkaian memberikan faedah yang boleh dipertimbangkan sebagai suatu wadah
kejuruteraan rangkaian yang penting bagi sekuriti rangkaian, reka bentuk rangkaian dan juga
bagi pemantauan dan pengurusan rangkaian. la memberikan perkhidmatan yang berbeza
seperti mengenal pasti aplikasi yang paling banyak menggunakan sumber rangkaian, ia
mewakili bahagian teras daripada sistem pengesanan instrusi secara automatik, ia membantu
mengesan aplikasi anomali, dan ia juga membantu mengenali aplikasi yang digunakan di
seantero dunia bagi tujuan penawaran produk baru. Dalam kata lain, pelbagai cabaran yang
dihadapi oleh para jurutera rangkaian dalam usaha mereka mengelaskan trafik. Yang paling
biasa adalah pertambahan jenis aplikasi dan saiz data trafik'yang besar. Oleh itu, berdasarkan
kajian lepas, ramai penyelidik berlumba-lumba memperkenalkan kaedah kaedah yang
berkesan bagi pengelasan trafik. Keberkesanan pengelasan trafik bergantung pada beberapa
faktor penting seperti ketepatan pengelasan, penggunaan memori dan masa pemprosesan
Tesis ini mencadangkan vital random forest VRF sebagai pengelasan trafik rangkaian yang
berkesan, yang merupakan satu pakej yang-memperkenalkan teknik pemilihan penapis baru,
pengurangan input data dan model(binaan baru bagi kaedah random forest baru untuk
mengelaskan trafik rangkaian bagi.set data yang besar. VRF juga bermatlamat mengurangkan
masa pemprosesan, meningkatkan ketepatan pengelasan, serta mengurangkan penggunaan
memori. Rangka kerja VRF yang dicadangkan memberikan tiga sumbangan, pertama, reka
bentuk teknik pemilihan penapis baru berdasarkan penggunaan teknik empat dan dua penapis
bagi memilih set penapis yang paling signifikan. Kedua, pengurangan input data yang
bertujuan menyingkirkan semua input rekod yang berlebihan dengan pengkatogerian kelas.
Ketiga, mereka-bentuk model binaan baru bagi random forest standard, yang dikenali sebagai
ABRF (Active Build model Random Forest). ABRF dibina berdasarkan pokok aktif
(pengelas), sebaliknya, pokok pasif didiagnosis, dikeluarkan dan diganti dengan pokok aktif.
Keputusan eksperimen adalah berdasarkan beberapa daripada set data tanda aras (data set
global). Data ini dikumpul daripada beberapa rangkaian bagi mencapai semua paket yang
berkaitan dengan TCP, UDP dan IP dalam kedua-dua arah. Keputusan menunjukkan
penambahbaikan yang ketara dari segi faktor yang signifikan, iaitu ketepatan pengelasan,
masa pemprosesan dan penggunaan memori. Secara purata, keputusan VRF berhubung
dengan faktor ini dijalankan berdasarkan. 16 set data tanda aras, ketepatan keseluruhan VRF
meningkat sebanyak 6% berbanding dengan hutan rawak asal untuk mencapai 99.58%, masa
pemprosesan telah menurun dengan perbezaan 62% manakala VRF menggunakan hanya 38%
daripada jumlah purata masa dan purata penggunaan memori dikurangkan sebanyak 40%.
Selanjutnya, VRF telah disahkan melalui perbandingan keputusan daripada faktor yang
dinyatakan di atas dengan penyelidikan terdahulu.
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An Efficient Network Traffic Classification Based on Vital Random Forest for
High Dimensional Dataset

ABSTRACT

This thesis proposes and implements an efficient network traffic classification method
based on a new vital random forest for high dimensional data. Network traffic engineering
is one of the most important technologies that have witnessed a rapid growth in the
revolution of worldwide technologies. Network traffic classification has added
considerable interest as an important network engineering tool for network security,
network design, as well as network monitoring and management. It can introduce
different services such as identifying the applications which are most,consuming for
network resources, it represents the core part of automated intrusion detéection systems, it
helps to detect anomaly applications and it helps to know the widely-used applications
for the intention of offering new products. On the other hand, several challenges faced by
network engineers on their course to classify traffic. The mest<common of which are
increasing application types and the huge size of data. traffics. Therefore, many
researchers have been competing in literature to introduce.an efficient method for traffic
classification. The efficiency is dependent on important factors such as classification
accuracy, memory consumption and processing time._This thesis presents a Vital Random
Forest (VRF) as efficient network traffic classification which is a one package that
introduces a new features-selection technique, data inputs reduction and a new build
model for original random forest methad to’ classify network traffic for huge datasets.
VRF aims to reduce processing time,‘increase classification accuracy and decrease
memory consumption. The proposed‘framework of VRF consists of three contributions;
first one is design of a new features=selection technique based on adopting four techniques
and two filters for selecting mast significant features set. Second is a data input reduction
aiming to remove all redundant record inputs with class categorization. Third is to design
a new build model for standard random forest called Active Build model Random Forest
(ABRF). ABRF is built*based on active trees (classifiers) while the passive trees are
diagnosed, omitted<and replaced with active trees. The results from the experiments
conducted are hased on several benchmark datasets (global dataset). These data were
collected from.the edge of a network to access all packets associated with a TCP, UDP
and IP comnections in both directions. The results exhibit noticeable improvement in
terms of three significant factors, namely; classification accuracy, processing time and
memory consumption. The averaging results of VRF with regard to these factors were
conducted based on 16 benchmark datasets where the classification accuracy of VRF is
increased by 6% compared with original random forest to reach 99.58%, the processing
time was decreased down with difference 62% while VRF consumed only 38% from the
total average time and the averaging memory consumption is reduced by 40%.
Furthermore, VRF has been validated by comparing the results for the above-mentioned
factors with previous works.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Network traffic engineering is one of the most important technologies that have
witnessed a rapid growth in the revolution of global technologies. Network traffic
identification and classification have recently gained considerable interest as an important
network engineering tool for network security, network design, ‘as well as network
monitoring and management (Dainotti, Pescape, & Claffy, 2012).

Network traffic classification is a process that categorizes network traffic according
to various parameters (e.g. port number, arrival time, type of protocol, packet length, etc)
into a number of application classes such as (P2P, WWW, Mail, etc.). This method
introduces multi-beneficial solutiens in different avenues, such as network security,
network management, network measurement and quality-of-service (QoS) (Callado et al.,
2009). Many of networkengineers have had started to inspect and analyze network traffic
but they faced several novel challenges the most significant of which are the huge amount
of classified.data traffic and the variety of applications. As a result, numerous studies
have been proposed to face the above mentioned challenges and they started competing
in terms of different factors such as accuracy of classification, memory consumption,
CPU consumption and time consumption of processing (Dainotti, Pescapé, & Sansone,
2011; Nguyen & Armitage, 2008). The studies introduced various solutions that involved
two major types: First, representing traditional solutions that include well-known port
number, deep packet inspection and behavior-based approach. Second is Machine

Learning (ML): there was a considerable interest in several disciplines such as



philosophical, logical and conceptual issues, and then research interest shifted to
computational and algorithmic aspects of ML that is driven mainly by practical
application. That’s why many studies were rerouted towards ML. This thesis focuses on
supervised machine learning method and its contribution in the area of network traffic

classification.

1.2 Background

This section provides a general background to the work presented in this thesis. It
briefly introduces the principal technologies referenced throughout this thesis as network

traffic engineering, Machine Learning and Random Forest.

1.2.1 Network Traffic Engineering

First and foremost, to understand the network traffic engineering we need to define
the network engineering, it’s:a method of manipulating your network to suit your traffic.
Network traffic engineering is defined as that aspect of network engineering of dealing
with the issue of.performance evaluation and performance optimization of operational IP
networks .(€alado et al., 2009). Traffic Engineering encompasses the application of
technolegy and scientific principles to the measurement, characterization, modeling, and
control of network traffic. The enhancement of the network is achieved at both levels:
traffic and resources, with regard to different performance requirements and utilizing
network resources economically and reliably. The performance is measured in terms of
delay, jitter, packet loss and throughput. The main purpose of network traffic engineering
is to facilitate reliable network operations. This is accomplished using policies to keep

network survivability and minimizing the vulnerability of the network to service outages



