

A T-Way Test Suite Generation Strategy for Sequence

Based Interaction Testing

by

Mohd Zamri Bin Zahir Ahmad

1430211379

A thesis submitted in fulfillment of the requirements

for the degree of Master of Science (Computer Engineering)

SCHOOL OF COMPUTER AND COMMUNICATION

ENGINEERING

UNIVERSTI MALAYSIA PERLIS

2016

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t

UNIVERSITI MALAYSIA PERLIS

DECLARATION OF THESIS

Author’s full name : ………………………………………………………………………..........................

Date of birth : ……………………………………

Title : ………………………………………………………………………..........................

…………………………………………………………………….............................

…………………………………………………………………….............................

Academic Session : ……………………………………

I hereby declarethat the thesis becomes the property of Universiti Malaysia Perlis (UniMAP) and to be placed

at the library of UniMAP. This thesis is classified as :

CONFIDENTIAL (Contains confidential information under the Official Secret Act 1972)*

RESTRICTED (Contains restricted information as specified by the organization where

research was done)*

OPEN ACCESS I agree that my thesis is to be made immediately available as hard

copy or on-line open access (full text)

I, the author, give permission to the UniMAP to reproduce this thesis in whole or in part for the purpose of

research or academic exchange only (except during a period of years, if so requested above).

Certified by:

SIGNATURE SIGNATURE OF SUPERVISOR

(NEW IC NO. / PASSPORT NO.) NAME OF SUPERVISOR

Date : Date :

880525-26-5203 DR. ROZMIE RAZIF BIN OTHMAN

18 AUGUST 2016 18 AUGUST 2016

MOHD ZAMRI BIN ZAHIR AHMAD

25 MAY 1988

A T-WAY TEST SUITE GENERATION STRATEGY

FOR SEQUENCE BASED INTERACTION TESTING

2015 / 2016

/

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t

ii

ACKNOWLEDGEMENT

Praised be to Allah S.W.T the Most Gracious and the Most Merciful. Peace is upon him,

Muhammad messenger of Allah. Alhamdulillah, first and foremost, I would like to

express my gratitude to Allah S.W.T for His blessed and mercy, I managed to complete

this research work successfully. I also want to thank to all who had guided me through

all technical difficulties throughout the project.

Firstly, I’m grateful to have a very supportive family especially my parents, Zahir

Ahmad and Ishrat Jahan, and my wife, Rosliza Rasli. Their courage are endless and I

will never forget their continuous support, encouragement and praise towards me to

complete this course. This research also definitely cannot be successful if I don’t have a

very knowledgeable and supporting supervisor. He has provided me a nonstop

guidance, continuous advice, support and assistance through completion of this project.

To my supervisor Dr. Rozmie Razif Othman, I owe you one. I really appreciate your

knowledge and support and it means more than you think. Only Allah knows.

Not to forget, my very special thanks is for School of Computer and Communication

(SCCE) of Universiti Malaysia Perlis (UniMAP) and Ministry of Higher Education

Malaysia (MOHE) for supporting and fund my study under SLAB program. The

scholarship is mean for me. Last but not least, for those who lend me their hand within

the period of completing this thesis, Mohd Shaiful Aziz, Mohd Wafi Nasrudin and

others, may your life is full of brightness and happiness in the future. Thank You.

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t

iii

TABLE OF CONTENT

 PAGE

DECLARATION OF THESIS i

ACKNOWLEDGEMENT ii

TABLE OF CONTENT iii

LIST OF TABLES vi

LIST OF FIGURES vii

LIST OF ABBREVIATIONS viii

ABSTRAK x

ABSTRACT xi

CHAPTER 1 INTRODUCTION

1.1 Overview Background of Software Testing 1

1.2 Problem Statements 7

1.3 Aim and Objectives 9

1.4 Research Scope 9

1.5 Research Methodology 12

1.6 Thesis Organization 14

CHAPTER 2 THEORY STUDIES & LITERATURE REVIEW

2.1 Overview Of Theory Studies And Literature Review

16

2.3 Problem Definition Model 17

2.4 Analysis of Existing Sequence Based T-Way Testing

23

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t

iv

 2.4.1 T-Sequence (T-Seq) 23

 2.4.2 Upper Bound, (U)

24

 2.4.3 Upper Bound Reversal, (Ur)

25

 2.4.4 Sequence-Based Interaction Testing Implementation

Using Bees Algorithm

25

 2.4.5 Event Driven Input Sequence T-way using Stimulated

Annealing (EDIST –SA)

27

2.5 Summary of Existing T-Way Sequence Based Analysis 28

2.6 Summary 29

CHAPTER 3 METHODOLOGY

3.1 Overview of Methodology 30

3.2 SCATS Strategy 31

3.3 Test Case Generator 32

3.4 Sequence Tree 34

3.5 Tuple Generator 41

3.6 Summary 44

CHAPTER 4 RESULTS AND DISCUSSION

4.1 Overview Evaluations of SCATS 45

4.2 Demonstration of Correctness Evaluation 46

4.3 Evaluations of SCATS 48

 4.3.1 Evaluation of 3-Way Testing 49

 4.3.2 Evaluation of 4-Way Testing 50

 4.3.3 Evaluation of 5-Way Testing 52

4.4 Summary 54

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t

v

CHAPTER 5 CONCLUSION AND FUTURE WORKS

5.1 Overview 55

5.2 Research Summary 56

5.3 Research Contributions 57

5.4 Future Works and Recommendations 58

REFERENCES 59

APPENDIX A 63

LIST OF PUBLICATIONS & AWARDS 64

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t

vi

LIST OF TABLES

NO. PAGE

2.1 Home Security System Representation. 17

2.2 Exhaustive Test of Sequence Based.

19

2.3 3-Way Testing Tuples.

20

2.4 Test Case with Covered Tuples.

21

2.5 Final Test Case of 3-Way Sequence Based for Car Parking

System.

22

2.6 Critical comparison of existing strategy sequence based t-way

testing.

28

4.1 Produced Tuples for 3-Way Testing. 46

4.2 Generated Test Case from SCATS.

47

4.3 Coverage of Sequence Tuple with SCATS Test Case.

47

4.4 Result for SCA (N, 3, s).

49

4.5 Result for SCA (N,4, s).

51

4.6 Result for SCA (N, 5, s). 52

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t

vii

 LIST OF FIGURES

NO. PAGE

1.1 Software Testing Cycle. 10

1.2 Research Methodology Organization 13

2.1 Home Security System. 18

3.1 SCATS Framework. 31

3.2 Pseudocode for Test Case Generator Algortihm. 34

3.3 Initial Sequence Tree for System in Figure 2.1. 35

3.4 Sequence Tree Representing ABC. 36

3.5 Sequence Tree for Tuples ABC and ABD. 36

3.6 Sequence Tree for Tuples ABC, ABD and ACD. 37

3.7 Sequence Tree for Tuples ABC, ABD, ACD and

BCA.

37

3.8 Tuple ABD in Sequence Tree. 38

3.9 Node B before Becoming Terminal Node. 40

3.10 Node B after Becoming Terminal Node. 40

3.11 Example of Tuple Generation Algorithm. 42

3.12 Pseudocode for Tuple Generator Algorithm. 43

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t

viii

LIST OF ABBREVIATIONS

AETG Automatic Efficient Test Generator

BA Bee Algorithm

CA Covering Array

CPU Central Proccessing Unit

CR Cooling Rate

EDIST-SA Event Driven Input Sequence T-way using Stimulated

GB Giga Byte

GTWay Generalized T-Way Test Suite Generator

GUI Graphical User Interface

IPOG In-Parameter-Order-General

ISTQB International Software Testing Qualitfication Board

ITTDG Integrated T-way Test Data Generation Strategy

JDK Java Development Kit

NA Not Available

NASA National Aeronautics and Space Administration

NIST National Institute of Standard and Technology

NP-Hard Non-deterministic Polynomial-time Hardness

RAM Random Access Memory

SA Stimulated Annealing

SCA Sequence Covering Array

SCATS Sequence Covering Array Test Suite Data Generation

SSA Standard Stimulated Annealing

SUT System Under Test

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t

ix

TCG Test Case Generator

TCGA Test Case Generator Algorithm

T-Seq T-Sequence

U Upper Bound

Ur Upper Bound Reversal

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t

x

Strategi Penjanaan Sut Ujian T-Hala untuk Ujian Interaksi Berdasarkan Turutan

ABSTRAK

Bagi melengkapi teknik rekabentuk ujian yang sedia ada (contoh; analisis sempadan

nilai, pembahagian setara dan graf sebab dan kesan), ujian t-hala adalah suatu teknik

rekabentuk ujian yang digunakan khusus untuk mengesan pepijat yg terhasil melalui

interaksi input. Sejak 20 tahun yang lalu, banyak strategi t-cara yang telah dicadangkan

dalam penyelidikan termasuk General T-way (GTWay), In Parameter Order General

(IPOG), Automatic Efficient Test Generator (AETG), dan Jenny. Walaupun strategi t-

hala yang telah dicadangkan terbukti boleh mengesan pepijat (dalam banyak

penyelidikan kajian kes menunjukkan bahawa keberkesanan sut t-hala ujian setanding

dengan sut ujian menyeluruh), strategi ini hanya memberi fokus kepada interaksi input

tidak berurutan. Strategi t-hala tidak berurutan adalah mustahil untuk digunakan untuk

kawalan dan sistem reaktif (iaitu isyarat input tiba pada masa yang berbeza). Oleh itu,

penyelidik pada masa kini mula memberi fokus kepada strategi t-hala berdasarkan

urutan. Walaubagaimanapun, penjanaan sut t-hala ujian adalah masalah tidak-

berketentuan masa-polinomial (NP-Hard), maka tiada satu strategi boleh menyatakan ia

boleh menghasilkan sut ujian yang optimum bagi setiap konfigurasi sistem.

Bermotivasikan daripada cabaran tersebut, tesis ini mencadangkan suatu strategi baharu

t-hala, yang dinamakan Sequence Covering Array Test Suite Data Generation

(SCATS), yang menyokong ujian t-hala berdasarkan urutan. SCATS

mengimplementasikan tiga komponen utama iaitu aturan merangkumi turutan, penjana

tuple, dan penjana kes ujian untuk menghasilkan saiz sut ujian yang optimum. Penilaian

telah dibuat dengan membandingkan SCATS dan strategi yang telah sedia ada dari segi

saiz sut ujian, dengan pelbagai kekuatan (3 ≤ t ≤ 5) dan acara (3 ≤ s ≤ 30). Hasil

daripada eksperimen ini menunjukkan bahawa dalam purata, SCATS menghasilkan

keputusan sut ujian yang berdaya saing berbanding dengan strategi lain.

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t

xi

A T-Way Test Suite Generation Strategy for Sequence Based Interaction Testing

ABSTRACT

Complementing existing test design techniques (e.g. boundary value analysis,

equivalent partitioning and cause and effect graphing), t-way testing is a test design

technique that specifically used to cater bugs due to interaction. Many t-way strategies

have been proposed in literature including General T-way (GTWay), In Parameter

Order General (IPOG), Automatic Efficient Test Generator (AETG), and Jenny for the

past 20 years. Although proposed t-way strategies have been proven to detect bugs (in

many published case studies demonstrate that the effectiveness of t-way test suite

comparable to exhaustive test suite), these strategies only focus on sequence-less

interaction. For control and reactive system (i.e. input signals arrived at different time),

the implementation of sequence-less t-way strategy is not possible. As a result,

researchers nowadays start to focus on sequence based t-way strategy. However, as

generating t-way test suite is an NP-Hard problem, no single strategy can claims it

producing the optimal test suite for every system configuration. Motivated by the

aforementioned challenges, this thesis presented a new t-way strategy, named Sequence

Covering Array Test Suite Data Generation (SCATS), which support sequence based t-

way test suite generation. SCATS implements three main components which is

sequence tree, tuple generator and test case generator in order to produe the optimum

test suite size. Evaluations have been done by comparing SCATS with existing

strategies with various strength(3 ≤ t ≤ 5) and events (3 ≤ s ≤ 30) in term of test suite

size generated. Experimental result demonstrates that in most cases SCATS produces

competitive test suite size compare to other competing strategies.

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t

1

CHAPTER 1

INTRODUCTION

1.1 Overview Background of Software Testing

Nowadays, many applications use in our daily life (i.e. including both hardware

and software applications) are controlled by software. These applications are varied

from small, simple, and non-critical application to a very large, complex and life-critical

application. In order to fulfill the requirements and needs for the application, the

software engineers need to develop a software system that is flexible, tangible and even

configurable.

In doing so, the developed software becomes more complicated and complex.

This is because current software development needs to get involved with numbers of

input parameters, several system integrations and multiple environment deployments.

However, to do exhaustive testing is next to impossible due to resources and timing

constraints (Younis, Zamli, & Isa, 2008). Here, software testing plays an important role

in ensuring that all functional as well as non-functional requirements of the developed

software system are fulfilled. Even though software testing usually consume much of

resources (i.e. both financial and work hours), reducing efforts in this stage can lead to a

greater resource consumptions.

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t

2

Software testing aims is to determine whether it matches its specifications while

executes in its planned environments (Saini & Rai, 2013). In a software development

life cycle, the software testing phase is most important to be conducted. Software testing

consumes about 40% to 80% of the total cost in the development of software (Manika &

Sona, 2014). According to the reports by Charles T. Carroll, lack of testing has cost

around 22.2 to 59.5 billion US Dollars every year in United States (Carroll, 2003a),

(Carroll, 2003b). This loss figure excluding the loss from critical software application

since it is impossible to determine the cost of losing one‟s life.

Since software nowadays has been entrusted to operate in safety critical and life

threatening applications (Othman, Zamli, & Nugroho, 2012), (Zamli, Klaib, Younis, Isa,

& Abdullah, 2011), (Kuhn & Reilly, 2002), advancement in software testing is desirable

in order to ensure the conformity of the developed software. As a result, many software

testing techniques (or strategies) have been proposed in the literature. International

Software Testing Qualifications Board (ISTQB) has listed several important testing

strategies which include Equivalent Partitioning, Boundary Value Analysis (BVA),

Cause and Effect Graphing and Combinatorial Testing (or also refers as Interaction

Testing). Researchers invented various testing strategies in order to reduce number of

test data. Hence, variants of testing are aims to identifies variants of errors and faults

(Shekhar, 2014).

Equivalent partitioning is first introduced by Glenford Myers in his book Art of

Software Testing (Myers, 2004). In equivalence partitioning, input domain can be

divided into numbers of equivalence classes. This could be done by categorize test cases

which have same parameter or behavior into same class. By assuming the test case in

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t

3

the same classes is equivalence with another value, all other test cases in the same class

also would expect to discover the same fault too. By applying this method, software

tester could reduce much of testing time as repeated test case is reduced.

There are at least two classes could be defined which is valid and invalid class.

Valid class covers all test case which has been defined by the input parameter of a

system while invalid class is covered all possible values that might be useful for testing.

There are also external conditions that may be identified and categorized in another

class. After test case has been categorized, the process of identifying test cases is

beginning with a unique number assigned to each equivalence class. After test cases

have been covers of all valid equivalence classes, new test cases are produced to cover

as many as possible of uncovered valid equivalence classes if any. By summary test

case design of equivalence partitioning is depends on two major steps which identifying

the equivalence classes and defines the test cases.

For example a company has set up discount for sale, 5% discount is eligible for

purchase within RM50 to RM100 and 10% discount is eligible for purchase more than

RM100. By using equivalence partitioning, we can classify the test input parameter into

invalid and valid classes. For invalid class, the first class is for purchase below than

RM50 (e.g. RM49.90). For valid class, the first class is for purchase of RM50 to RM100

and second class is for purchase of RM100 and above. Noticed that there are 3 classes

identified and this could ease into the software testing process.

Boundary Value Analysis has been defined by Boriz Beizer (Beizer, 1990).

Boundary value analysis also called as range checking, is more likely same concept with

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t

4

equivalence partitioning except process of creating test cases at the edge of classes. In

fact, in a research done by Reid, boundary value analysis is found as most effective

compared to equivalent partitioning (Reid, 1997). One of the famous quotes is “Bugs

lurk in corners and congregate at boundaries” (Beizer, 1990). It means that fault often

happens at the edge of equivalence of classes which is software testers frequently put

less attention on this matter. Myers has defined the two major differences of boundary

value analysis and equivalence (Myers, 2004), firstly boundary value analysis focuses

on one or more test cases at the edge of equivalence classes rather than selecting any

test cases in equivalence partitioning as main subject of the test.

Secondly, equivalence partitioning technique it attempt to put a lot of attention

on the input condition to derive test cases, but in boundary value analysis test cases also

derived from the output equivalence classes‟ condition. However, equivalence

partitioning used together with boundary value analysis in software testing as it is

related to each other. There are advantages of using this technique which is software

tester will have a very good procedure in determining test cases to be selected. Other

than that, boundary value analysis also may expose potential user input problems in

order to find the test cases. Test cases generated also will be small in number as all

possible test cases at the edge of classes have been derived.

For the same example as given in equivalence partitioning above, there are 3

classes defined which purchase below than RM50, purchase between RM50 to RM100

and purchase more than RM100. For first class the boundary is for RM49.99 and below.

The second class is RM50.01 and RM100, and the third class is RM100.01 and above.

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t

5

In boundary value analysis the final test cases should reflect and covers test cases of this

condition at least once.

The Software testing technique Cause-Effect Graph was made-up by Bill

Elmendorf of IBM in 1973 (Elmendorf, 1973). Different from equivalence partitioning

and boundary value analysis, instead of designing a test case manually, test designer

could list the function of inputs into Boolean graph. This can be done by listing all

possible relationships between specific combinations of input and output. A

combination of inputs is called as cause and the output of the combination is called as

effect. This method is also known as fish-bones diagram. After listing, the second step

is trying to connect the cause and effect listed with logical annotation such as AND,

OR, NOT and so on. There are maybe known cause leads to unknown effect and vice

versa, but at this point a dummy node is placed to complete the graph. A table of

decision then is constructed based on the completed graph and hence test cases are

generated based on it. By doing the cause-effect graphing, two consideration must be

made up which is range values and cause constraints. An advantage of using cause-

effect graphing is it helps to find the root cause of problems, hence it could reduce the

number of test cases. But in real-world applications, the time takes to do such modeling

is limited since it consumes longer time to design the analysis for a larger system.

Interaction testing is a form of functional testing (M. B. Cohen, 2004). It is also

familiar known as t-way strategies. As today‟s most of technology is software

depended, software testing strategies also need to be concerned. Most of the software

consists of components and as the result, faults may occur between unexpected

interactions of the inputs. Unlike equivalence partitioning and boundary value analysis,

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t

6

interaction testing focus on finding bugs due to interactions between input parameter

(Zamli, Othman, & Zabil, 2011). Usually this type of faults is seen after the software

has been delivered. Many types of t-way strategies have been produced which includes

combinatorial testing, pairwise testing, sequence covering array testing and more. In t-

way strategies, it requires every combination of any t parameter values to be covered by

at least one test, where t is referred to as the strength of coverage and usually takes a

small value (Lei, Kacker, Kuhn, Okun, & Lawrence, 2007). As the exhaustive test is

impossible for a larger system, by using t-way strategies, it could reduce the number of

test cases by selecting the suitable strength. The smaller strength picked, will cause the

smaller test cases produces.

Many papers published in the past 25 years have shared the practice of utilizing

of combinatorial testing or t-way strategies and its effectiveness by testing in real world

applications. As examples, ADA compiler was successfully tested by Mandl in 1985

using 2-way testing (Mandl, 1985), (Austin, Wilkins, & Wichmann, 1991).

Combinatorial testing also has been used to improve the quality and efficiency of

internet protocol testing (Borroughs, Jain, & Erickson, 1994). In year 1996, Williams

and Probert demonstrated that combinatorial testing can be used to test the network

interfaces (Williams & Probert, 1996). Kevin Burr used combinatorial testing technique

to generate test cases to test the email system, with AETG (Burr & Young, 1998). In

year 2000, Huller shares the experience of generating a minimum subset of test cases

which gave good coverage of the test domain by using the combinatorial testing for

system level testing of small, commercial satellite ground systems (Huller, 2000).

Moreover, many researchers have reported to use the same technique as Mandl in

testing Graphical User Interface (GUI) coding (White & Almezen, 2000), (Xie &

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t

7

Memon, 2008), (Huang, Cohen, & Memon, 2010), (Yuan, Cohen, & Memon, 2011),

(Memon & Xie, 2005). Not only that, researchers from the National Institute of

Standard and Technology (NIST) have succeeded in testing a NASA based system

using 6-way testing (Kuhn, Lei, & Kacker, 2008), (Kuhn & Okun, 2006).

As mentioned earlier, even a small contribution towards software testing is

desirable in order to complement the advancement in current software technology. This

research work focus on test case design strategy that based on interaction testing.

Further Section in this Chapter will highlight the problem statements as well as the

roadmap of the thesis.

1.2 Problem Statements

One of the challenges in software testing is to design a good test case. As a

result, many test case design strategies have been proposed in the literature, including

boundary value analysis, equivalence partitioning and cause and effect graphing (Myers,

2004), (Hass, 2008), (Sharma & B., 2010), (Naik & Tripathy, 2008). However, these

strategies are not focusing for interaction testing problems. While these strategies have

proven its usefulness, none of these strategies are suitable to cater bugs due to

interaction between input parameters.

Therefore, researchers start to focus on interaction testing, which also known as

t-way testing (where t refers to interaction strength). As a result, many t-way test suite

(consists of several test cases) generation strategies have been proposed recently

including Automatic Efficient Test Generator (AETG) (D. M. Cohen, Dalal, Parelius, &

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t

8

Patton, 1996), (M. B. Cohen, Dwyer, & Shi, 2007), Jenny (Jenkins, 2010), General T-

Way (GTWay) (Zamli, Klaib, et al., 2011) and In Parameter Order General (IPOG) (Lei

et al., 2007). Despites the above mentioned proposed t-way strategies, these t-way

strategies only focus on sequence-less interaction between the input parameters. In

control and reactive system (i.e. input signals arrived at different times), usage of

sequence-less t-way strategy is not possible.

Not until recently, researchers start to investigate on sequence based t-way

strategy. Several sequence based t-way strategies have been proposed in literature (e.g.

T-SEQ (Kuhn, Higdon, Lawrence, Kacker, & Lei, 2012) , U and Ur (Chee, Colbourn, &

Horsley, 2013), BA (Mohd Hazli, Zamli, & Othman, 2012), and EDIST-SA (Rahman,

Othman, Ahmad, & Rahman, 2014)). However, generating a t-way test suite has been

classified as a Non-deterministic Polynomial-time Hardness (NP-Hard) problem (Shiba,

Tsuchiya, & Kikuno, 2004), (Nie & Leung, 2011) & (Chooramani & Garhwal, 2013).

Motivated by the aforementioned challenges, this research presented a sequence

based t-way strategy, named Sequence Covering Array Test Suite Data Generation

(SCATS). SCATS strategy is designed to focus for sequence based input interaction

testing where its function is to produce a minimum test suite size compared to other

existing strategies.

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t

9

1.3 Aim and Objectives

The aim of this research is to design and evaluate a t-way test suite generation

strategy, named Sequence Covering Array Test Suite Data Generation (SCATS). This

strategy is specifically designed for sequence based input interaction testing. To

comprehend this aim, the following objectives are adopted;

i. To propose a suitable data structure that can be used in generating sequence

based t-way test suite.

ii. To design a suitable implementation algorithm in order to generate sequence

based t-way test suite.

iii. To evaluate the proposed strategy‟s preformance (i.e. in terms of test suite

size generated) by comparing with benchmark experiment.

1.4 Research Scope

International Software Testing Qualifications Board (ISTQB) highlights 5 main

stages in common software testing activities. There are test planning and control stage,

test analysis and design stage, test implementation and execution stage, evaluating exit

criteria stage and finally control and monitoring stage. All these stages are illustrated in

Figure 1.1 below.

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t

10

Figure 1.1: Software Testing Cycle.

In test planning, there are three major tasks involve within this stage. First is to

determine scope, risks and identify objective of testing. Second is to determine test

approach and the third are to implement the test strategy. While in control segment, it

involved with several tasks which is assessed and analyzes the result of testing, monitor

the test coverage, provides information on testing before to initiate corrective actions,

while last step is to make decisions.

Second cycle is test analysis and test design. Principally in this stage it starts

with reviewing the test basis in order to identify the test conditions. Then a set of test is

designed. After that, the design of the test is evaluated in term of the testability of the

systems and requirement.

Test Planning

and Control

Analysis and

Design

Implementation

and Execution

Evaluating

Exit Criteria

and Reporting

Test Closure

Activities

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t

11

Third cycle is test implementation and execution. In test implementation it has

several major tasks which start with prioritize test cases and creates test data. Then a set

of test procedure is listed down for instruction during the test execution. Next step is to

create a test suite which contains a set of test case. This is for ensuring the efficiency of

the test execution. While in test execution, it has the following tasks which is to execute

the test suites based on the test procedures prepared earlier. A retest is executed if there

is test that failed and it is part of procedure to determine the fix. Every time test being

executed, a log of outcome each of the test is recorded. This includes version of the

software under tests. It is called a test log and is used for audit trail. After the test has

been done, the result of the test is compared to the expected result.

The fourth cycle is to evaluate exit criteria and reporting. Exit criteria will be set

at each test level based on risk assessment and the criteria is vary from project to

project. Exit criteria are required when there is maximum test are executed with certain

pass percentage. Also used when the bug rate is noticeably below a certain level or

when the deadline is achievable. Additionally, there are several tasks involved in this

cycle, which is to check and compare test logs and exit criteria specified in the test plan.

Then to asses if the exit criteria need to be amend or more tests are needed. The last and

most important within this cycle is to write a test summary report for the stakeholders.

The last cycle is test closure activities. This stage is done when software is fully

delivered or released to the end customers. There are also other reasons that can affect

factor to close the testing such as when the project is cancelled, the target is achieved,

maintenance updated done and many more. The following step is a major task involved

within this stage, which is to check and confirm the deliverable product is based on

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t

12

actual demand. Then testware such test script must be ensured to be finalize and

archived because it may be will be used later. The most important in this cycle is to

handover the testware to the maintenance support organization in order to give full

support of the software in future.

In this research, all works focus test on test analysis and design stage. This

research aims to modify and enhance an existing technique of test suite generation in

order to support the sequenced based input parameter interaction. In addition, the

strategy needs to be applied must have the abilities to create a minimum test cases as

possible in the test suite without compromising with t-way testing principle which is to

cover all input parameter interactions for at least once. Furthermore, in this research

scope, applications that being tested with this strategy is in range of event, s between 3

to 30 while the strength, t varies from 3 to 6. Then the test suite generated by the

proposed strategy will be executed in Test Execution stage.

1.5 Research Methodology

In this research, there are three main phases of research methodology which can

be classified as;

i. Literature Review

ii. Design and Development

iii. Evaluations

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t

