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Struktur dan Sifat Elektrolit dan Elektrod untuk Suhu Pertengahan Sel Oksida Pepejal 

Bahan Api (IT-SOFCs) 

ABSTRAK 

Sel bahan api oksida pepejal (SOFCs) adalah peranti yang digunakan untuk 

menukarkan dari tenaga kimia kepada tenaga elektrik. Objektif utama tesis ini adalah 

untuk mengakaji stuktur dan sifat-sifat elektrod dan elektrolit  yang digunakan  dalam 

aplikasi suhu pertengahan SOFCs. Komposisi bahan positif elektrod (katod) ialah 

Ba0.5Sr0.5Co0.8-yFe0.2+yO3-δ (0 > y > 0.8) yang disintesis dengan menggunakan gabungan 

kaedah EDTA citrate pengkompleks. Fasa tunggal komposisi ini telah diperolehi 

selepas dipanaskan pada 900 ℃ selama 15 jam dengan menggunakan kaedah 

pengisaran terputus-putus. Belauan sinar x menunjukkan semua sampel membentuk 

larutan pepejal hingga komposisi terakhir dengan menunjukkan struktur simetri kubus 

dan kumpulan ruang Pm-3m. Selain itu, struktur hablur stabil sehingga apabila disinter 

sehingga 1100 ℃ di udara. Kemudian, kaedah penyaringan Rietveld dijalankan untuk 

menegnalpasti perubahan struktur diatas stuktur kubus simetri  dengan mengurangkan 

kandungan kobalt pada Ba0.5Sr0.5Co0.8-yFe0.2+yO3-δ. Hasil dari kajian dengan 

mengurangkan kandungan kobalt parameter kekisi dan sel unit kekisi telah berkurang. 

Kation Fe kekal pada kedudukan 1b pada koordinat oktahedral. Selain dari itu, bahan 

elektrolit dengan komposisi Ce0.8Sm0.2O1.9 telah disentisis menggunakan kaedah 

konvensional tidak balas pepejal. Komposisi Ce0.8Sm0.2O1.9 yang telah disentisis 

dibandingkan dengan sampel komesil untuk menentukan struktur hablur, sifat-sifat 

elektrik dan saiz ira. Hasil dari keputusan tersebut, parameter kekisi dan sel unit kekisi 

adalah dalam lingkungan yang sama. Walau bagaimanapun, saiz kumin hablur 

(menggunakan formula Sherrer) dan saiz ira Ce0.8Sm0.2O1.9 untuk komersial sampel 

lebih kecil berbanding sampel yang disintesis, Kekonduksian elektrik pada suhu 600
o
C 

untuk komersial sampel dan sampel yang disintesis masing- masing adalah 7 x 10
-2

 and 

2 x 10
-2

 Scm
-1

. Walaupun struktur untk sampel yang disediakan dan komersial adalah 

sama, namun, sifat-sifat electrik untuk sampel komensial adalah lebih tinggi. Daripada 

prestasi elektrokimia, setengah sel Ba0.5Sr0.5Co0.4Fe0.6O3-δ | Ce0.8Sm0.2O1.9 | 

Ba0.5Sr0.5Co0.4Fe0.6O3-δ daripada katod komposisi Ba0.5Sr0.5Co0.4Fe0.6O3-δ atau y = 0.4 

menunjukkan rintangan tertentu kawasan paling rendah (ASR) mengenai 0.1257 ῼcm2 

pada 600 ℃ daripada suhu operasi. 
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Structure and Properties of Electrolyte and Electrode Materials for Intermediate 

Temperature Solid Oxide Fuel Cells (IT-SOFCs) 

 

ABSTRACT 

Solid oxide fuel cell (SOFCs) is a device that used to convert from chemical 

energy to electrical energy. The aim of this thesis is to evaluate the correlation of 

structure and properties of electrode and electrolyte materials that were used for IT-

SOFCs. The positive electrode (cathode) materials with the composition of 

Ba0.5Sr0.5Co0.8-yFe0.2+yO3-δ (0 > y > 0.8) were prepared using combined EDTA citrate 

complexing method. Phase pure samples were obtained after the samples were heated at 

900
o
C for 15 hours with intermittence grindings. X-ray diffraction (XRD) showed that 

all samples were formed full solid solution between both end-members with a cubic 

symmetry and the space group of Pm-3m. Furthermore, the crystal structure remained 

stable after heated up to 1100
o
C in air. Then, Rietveld refinements were performed to 

evaluate structural changes on the crystal symmetry by reducing cobalt contents in 

Ba0.5Sr0.5Co0.8-yFe0.2+yO3-δ. Results indicated that reducing Co contents decreased the 

lattice parameters and unit cell volume. Fe cation was remained at the 1b-site with the 

octahedral coordination. On the other hand, electrolyte material with the composition of 

Ce0.8Sm0.2O1.9 was prepared using conventional solid-state synthesis route. The 

prepared Ce0.8Sm0.2O1.9 was compared with the commercial sample to determine their 

structure, electrical properties, and grain size. Results show that the lattice parameters 

and unit cell volume of the prepared and commercial Ce0.8Sm0.2O1.9 were similar within 

errors. But crystallite size (using Scherrer‟s formula) and grain size (SEM micrograph) 

of the commercial Ce0.8Sm0.2O1.9 were relatively smaller than the prepared sample. 

Furthermore, the measured electrical conductivities of commercial and prepared 

Ce0.8Sm0.2O1.9 were 7 x 10
-2

 and 2 x 10
-2

 Scm
-1

at 600
o
C, respectively. The structure of 

commercial and prepared Ce0.8Sm0.2O1.9 are similar, however, electrical properties of 

commercial Ce0.8Sm0.2O1.9 is relatively much better than prepared Ce0.8Sm0.2O1.9. On the 

other hand, the electrochemical performance of in-house prepared half-cell 

Ba0.5Sr0.5Co0.4Fe0.6O3-δ | Ce0.8Sm0.2O1.9 | Ba0.5Sr0.5Co0.4Fe0.6O3-δ shows the lowest Area 

Specific Resistance (ASR) about 0.1257 ῼcm
2

 at 600
o
C. 
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CHAPTER 1  

 

 

INTRODUCTION 

 

 

 

 

1.1 Solid Oxide Fuel Cells (SOFCs) 

  

There is an increasing electrical energy demand over the world to power all 

electrical devices. The major demand mainly used for construction, stationary power 

sources and transportations sector (Abas et al.,  2015). Fossil fuel from natural resources 

is a main resource used to generate electricity. However, fossil fuel is non-renewable 

and not sustainable energy resources. Therefore, alternative energy resources have been 

intensively investigated to replace the usage of natural resources.  

 

Solid oxide fuel cell (SOFCs) is one of the alternatives of clean and sustainable 

energy resources to generate electricity. SOFCs is used to generate electricity from 

chemical reaction between hydrogen (H2) and oxygen (O2) gas (Dupuis, 2011). SOFC 

offers high efficiency energy conversion (about 60 to 80%) and very low environmental 

impact to ensure future clean energy generation (Shao et al., 2012). Furthermore, SOFC 

is exhibited the highest specific power (in W.kg
-1

) and power density (in W.cm-
3
) at 

operating temperature of 650
o
C compared to other alternative energy conversion 

devices such as combustion engines, PEM fuel cells, photovoltaic cells, electromagnetic 

generator and thermoelectric generator as shown in Figure 1.1. Thus, SOFC is 
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considered as the most promising electrical power generation device for sustainable 

energy resource.  

 
 

Figure 1.1: The specific power of energy conversion device as a function of 

power density at 650
o
C (Wachsman & Lee, 2011). 

 

 

A SOFCs consist of two porous electrodes; anode (as negative electrode), 

cathode (as positive electrode) and separated by highly dense solid electrolyte. During 

the chemical conversion process, hydrocarbon was used as a fuel to supply H2 gas to 

anode while air was used to supply O2 gas to cathode. At the anode, oxidation process 

occurs and H2 was converted to H
+
 ions and released electrons. The electrons were 

flowed to the external circuit and move to cathode. The reduction process was occurred 

when O2 from air reacted with the flux of electrons at the cathode to produce O
2-

 ions. 

Then, the O
2-

 ions were diffused through electrolyte toward the anode. In the mean time, 

O
2-

 ions at the anode were reacted with H
+
 ions to produce H2O as a by-product. 

Therefore, continuous oxidation and reduction processes at the both anode and cathode, 
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respectively, resulting electricity was generated (Mahato et al., 2015).  Figure 1.2 shows 

a schematic diagram of SOFCs. The electrochemical reaction occurred at the anode and 

cathode as shown in equation (1.1) and (1.2), respectively.  

 

Anode: 2H2 (g) + 2O
2-

→ 2H2O + 4e
-    

                                                         (1.1) 

Cathode: O2 (g) + 4e
-
 → 2O

2-
                                                                     (1.2) 

 

Figure 1.2: The schematic diagram of SOFCs (Mahato et al., 2015). 

 

Conventional SOFCs are operated at high temperature between 800 and 1000°C. 

The high operating temperature is necessary for conventional SOFCs to improve kinetic 

reactions of the electrode and to reduce ohmic drop at the electrolyte (Zhou et al., 

2009). However, several problems occurred at the high operation temperature such as 

interface-reactions problem between electrode and electrolyte, materials compatibility, 

possibility of crack formation of cells due to thermal expansion coefficient (TEC) 

mismatch and high cost (Ahmadrezaei et al., 2013). Thus, these problems had led to the 

development of the new type of SOFCs that able to operate at relatively lower 

temperature (between 500 and 700
o
C) compared to conventional SOFCs (HT-SOFCs) 

known as the Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs).  
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IT-SOFCs are offers several advantages such as the reduction of energy 

consumptions, lowering the operation and setup cost, improved materials compatibility 

of components, enhancing the durability and reliability at long-term operation, and more 

widely selection of materials could be used (Huang et al, 2012): 

 

1.2 Properties of SOFCs components 

 

1.2.1 Electrolyte 

Electrolyte is a medium for diffusion of oxygen ions from cathode as a positive 

electrode to anode as a negative electrode. Electrolyte should only allow oxygen ions 

diffuse from cathode to anode but electrically resistive. Therefore, electrolyte materials 

must exhibit excellent ionic conductivity, chemical resistant, and high thermal stability 

at the operating temperature. Yttria stabilized zirconia (YSZ) is an example of 

conventional electrolyte used for SOFC. YSZ has high ionic conductivity, excellent 

chemical resistivity and thermal stability at an operation temperature of about 1000
o
C. 

There are seven general criteria of solid electrolyte could be used in SOFCs, such as the 

following (Mahato et al. 2015): 

1. Easy to fabricate and have small thickness, L and large area, A. 

2. Has ionic conductivity in range of 10
-3 

to 10
-1

Scm
-1 

at operating temperature. 

3. Have chemical stability or inert in oxidizing or reducing atmosphere. 

4. Low cost of materials and fabrication. 

5. Long-term stability at operating temperature.  

6. Match TEC with electrode and interconnector. 

7. High long-term reliability (high strength and high durability). 
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1.2.2 Anode 

 

Anode is a negative electrode in SOFCs. A porous anode should be electrically 

conductive to facilitate oxidation process for conversion of H2 from fuel to H
+
 ions and 

electrons. Thus, enables electrons to flow from the reaction site to the current collector. 

Thus, a conventional anode of SOFCs is made up by cermet which is the combination 

of ceramic and metallic materials. Ni/YSZ is a common anode materials used in SOFCs. 

The criteria of an anode are  (Taroco, et al. 2009): 

1. High mixed ionic and electronic conductivity about 1000 Scm
-1

. 

2. TEC values are matches those of the adjoining components (electrolyte). 

3. High chemical stability under a reducing atmosphere. 

4. Large triple phase boundary. 

5. High electrochemical or catalytic activity for the oxidation of the 

selected fuel gas. 

6.  High porosity (20 - 40 %) adequate for the fuel supply. 
 

1.2.3 Cathode 

 

Cathode is a positive electrode in SOFCs. A porous cathode should be electrically 

conductive to facilitate a flux of electrons from anode through external circuit to react 

with oxygen gas. Therefore, reduction process of O2 to O
-2

 ions could be accelerated. 

Lanthanum strontium manganese oxide (LSM) is an example of conventional cathode 

material that was used at high temperature operations of SOFCs. Generally, the 

requirement for SOFCs cathode are listed as follows (Sun et al., 2009):  

1. High electronic conductivity (approximately above 100 Scm
-1

 under 

oxidizing atmosphere). 
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2. Should have adequate porosity (approximately 30 to 40%) to diffuse 

gaseous oxygen. 

3. Thermal expansion coefficient (TEC) similar between an electrolyte and 

interconnector. 

4. Stable in oxidizing environment. 

5. Large triple phase boundary for electrochemical reaction of electron, 

oxygen ions and gas. 

6. Easily fabricated and relatively low cost. 

 

1.3 Problems Statement 

 

High temperature SOFCs (HT-SOFCs) that is operated at about 800 to 1000
o
C 

introduces a several drawbacks to cell components and also limited of trials selection. 

Thus, IT-SOFCs was developed to ensure the promising future clean of power 

generation. IT-SOFC offers very low carbon emissions, highly efficient (~80 %) and 

excellent fuel flexibility compared to the HT-SOFCs. Furthermore, IT-SOFCs also has a 

variety of advantages such as shortens time taken for start-up/shutdown, extended 

operation lifetime and minimizes thermal and sealing degradations (Zhao et al., 2009).  

 

The composition of Ba0.5Sr0.5Co0.8Fe0.2O3- was reported as excellent cathode 

materials for IT-SOFCs compared to La0.2Sr0.8Co0.8Fe0.2O3-δ (Ahmadrezaei et al., 2013). 

However, higher amount of cobalt content in Ba0.5Sr0.5Co0.8Fe0.2O3-δ  had raised to an 

environmental issue, high cost, structural instability and high thermal expansion 

coefficient (Chen et al., 2007). Thus, different concentrations of cobalt contents in 

Ba0.5Sr0.5Co0.8Fe0.2O3-δ were investigated in this project. 
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On the other hand, Ce0.2Sm0.8O1.9 was reported as the best candidate for electrolyte 

materials to be used in IT-SOFCs. However, preparation of Ce0.2Sm0.8O1.9 commonly 

involved complex wet methods such as sol-gel and combustion methods (Hui et al., 

2007). Thus, we attempted to simplify the synthesis method by using conventional 

solid-state synthesis route. After that, a comparison between commercial and in-house 

prepared SDC was performed to evaluate their properties. Then, electrochemical 

performance of half-cell between Ba0.5Sr0.5Co0.8Fe0.2O3-

δ|Ce0.2Sm0.8O1.9|Ba0.5Sr0.5Co0.8Fe0.2O3-δ were evaluated.  

 

1.4 Objectives 

 

The objectives of this study are: 

i. To synthesise and characterise electrolyte and positive electrode (cathode) 

materials for IT-SOFCs component.  

 

ii. To determine crystallographic properties of Ce0.8Sm0.2O1.9 as an electrolyte 

and Ba0.5Sr0.5Co0.8-yFe0.2+yO3-  (0  y  0.8) as a cathode. 

 

iii. To evaluate the electrical and electrochemical properties of electrolyte 

(Ce0.8Sm0.2O1.9) and half cells of BSCF|SDC|BSCF, respectively. 
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