
 

 

  
Abstract—This paper presents recent work on the improvement 

of the robotics vision based control strategy for underwater pipeline 
tracking system. The study focuses on developing image processing 
algorithms and a fuzzy inference system for the analysis of the 
terrain. The main goal is to implement the supervisory fuzzy learning 
control technique to reduce the errors on navigation decision due to 
the pipeline occlusion problem. The system developed is capable of 
interpreting underwater images containing occluded pipeline, seabed 
and other unwanted noise. The algorithm proposed in previous work 
does not explore the cooperation between fuzzy controllers, 
knowledge and learnt data to improve the outputs for underwater 
pipeline tracking. Computer simulations and prototype simulations 
demonstrate the effectiveness of this approach. The system accuracy 
level has also been discussed. 
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I. INTRODUCTION 

UVs are multi-function platforms with navigation requirements 
which depend highly on a specific mission and sensor suite 

onboard. It is entirely feasible that for a given suite of sensors, the 
vehicle can navigate adequately for one mission, but fail to meet the 
minimum requirements for another mission [1]. 
     A tracking component is essential to continuously manoeuvre the 
vehicle over a structure (e.g. pipeline). If the pipeline is lost (for 
instance due to being buried) the intelligent tracking system must be 
able to adapt to this condition and navigate the vehicle to the correct 
route of the pipeline [2]. 
     Due to underwater optical behaviour, there are also many 
occasions where the submarine cable is not visible enough for the 
vision processor to track the cable. In addition, the environment 
makes the cable invisible with time due to growth of underwater 
plants etc. [3]. 
     No a single type of AUV control system is able to solve all the 
tracking problems, but each type of problem has its own solution, 
normally specific to a particular application. This paper reports our 
ongoing work in improving the robustness and correctness of AUV 
tracking on occluded pipeline based on visual input. 
     This paper is structured as follows. Section II reviews the 
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previous work completed on the underwater target tracking system. 
Section III describes the methodology of the work. Section IV 
discusses the simulations procedure and results. While section V 
summaries the work presented with the conclusion of the paper. 

II. REVIEW OF PREVIOUS WORK 

 This section briefly describes our previous research work on 
control strategy and the motivation to improve its tracking robustness 
and correctness. The work is summarized as follows [4]: 
a) A vision system is developed which is capable of interpreting 

the underwater scene by extracting subjective uncertainties of 
the object of interest (i.e. pipeline images)   

b) Subjective uncertainties are further processed as multiple inputs 
of a fuzzy inference system that is capable of making crisp 
decisions concerning where to navigate.    

c) The system has been fully tested and the results are favourable 
(i.e. the results drifted within the tolerance limits).  

d) However, the images captured contain clear and visible pipeline, 
which made the correct inputs fed to the fuzzy inference system 
possible. 

e) Considering the practical aspect, visibility of underwater 
pipeline may not be available due to uncertain underwater 
conditions. Under these conditions, the system output may not 
be favourable anymore. Hence, it is reasonable to conduct 
further investigations for a better technique. 

III. METHODOLOGY 

 The proposed system consists of image processing operations and 
basic fuzzy inference systems enhanced by a supervisory fuzzy 
learning control technique. The image processing operations produce 
high-level information that is actually the morphological parameter 
for the input of a fuzzy inferences system (linguistic representation of 
terrain features). 
     Consider the situation illustrated by Fig.1. The illustration shows 
the system setup from plan view whilst the AUV is actually looking 
at the pipeline from its perspective view. The fuzzy logic is utilized 
to interpret this heuristic in order to generate the steering command 
set point. In this case, the set point of the AUV has a certain amount 
(∆X) to the right. 
 The basic steps of the algorithms are as follows: 
a)  Load RGB image and convert it into grey scale image. 
b)  Perform thresholding to binaries the image. 
c)  Label connected region and search for the largest connected 

region. 
d)  Perform deletion of unwanted connected region and the largest 

connected region is extracted as object of interest. 
e)  Perform image segmentation by dividing it into 5 segments and 

be processed separately for terrain features as multiple steps of 
inputs for the fuzzy controller. 
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f) In order to investigate more closely each specific area within the 
image segment, each segment is further divided into 6 
predefined sub segments in the image as illustrated in Fig.2. 

g)    Calculate the area for each sub-segment. 
h)    The area is accumulated as multiple inputs of fuzzy inference    
        system. 
i)  Apply fuzzy operators. 
j)  Apply implication method. 
k)  Aggregate all output fuzzy sets. 
l)  De-fuzzification. 
m)  Generate decision. The fuzzy output is a crisp value of the   
  direction for navigation (decision on control action).  
n)  Accumulate generated decision as learnt knowledge (data). 
o)  Apply fuzzy controller supervisor to monitor if the pipeline   
  occluded.  
 

 
Fig.1 Illustration of tracking strategy 

 

 
Fig.2 Illustration sub segment 

 
The fuzzy inference system developed has 6 inputs, 1 output and 13 
rules. The inputs are defined as follows: 
x1 = Pipeline area at upper left sub segment within 
        specific segment allocated in the image   
x2 =Pipeline area at upper right sub segment within  
       specific segment allocated in the image   
x3 = Pipeline area at lower left sub segment within 
       specific segment allocated in the image   
x4 =Pipeline area at lower right sub segment within 

       specific segment allocated in the image      
x5 =End point of pipeline relative to image center point    
x6 =Beginning point of pipeline relative to image center point    
 The output variable is defined as follows: 
y1 = AUV steering command set point       
     The fuzzy rules are as follows: 
(x5==Negative)&(x6==Positive)=>(y1=Turn_Left) 
(x5==Positive)&(x6==Negative)=>(y1=Turn_Right)  
(x2==Small)&(x4==Small)=>(y1=Turn_Right)  
(x1==Small)&(x3==Small)=>(y1=Turn_Left)  
(x5==Positive)&(x6==Positive)=>(y1=Turn_Right)  
(x5==Negative)&(x6==Negative)=>(y1=Turn_Left)  
(x5==Centre)&(x6==Centre)=>(y1=Go_Straight)  
(x5==Negative)|(x6==Negative)=>(y1=Turn_Left)  
(x5==Positive)|(x6==Positive)=>(y1=Turn_Right)  
(x2==Medium)&(x4==Medium)=>(y1=Turn_Right)  
(x1==Medium)&(x3==Medium)=>(y1=Turn_Left)  
(x2==Large)&(x4==Large)=>(y1=Turn_Right)  
(x1==Large)&(x3==Large)=>(y1=Turn_Left)  
     The dependency of some of the outputs on the two of the inputs is 
generated and plotted as output surface map as shown in Fig. 3, Fig. 
4 and Fig. 5. 
 

 
Fig.3 Output surface map for x5 and x6 

 

 
Fig.4 Output surface map for x2 and x4 

 

 
Fig.5 Output surface map for x1 and x3 

 
     The pipeline is considered occluded when no area information is 
acquired as input to the fuzzy inference system. The example of 
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occluded pipeline is shown in Fig.6. The fuzzy controller supervisor 
will use general rule that the pipeline is straight [5], hence use past 
learnt data from previous fuzzy output to perform linear 
extrapolation to replace the fuzzy output. 
 

 
Fig.6 Typical examples of occluded pipeline 

 

IV. SIMULATIONS AND RESULTS 

In the simulation stage, the process was started by defining the 
underwater working area of prototype on a grid of coordinates, 
150.0cm x 200.0cm max. The pipeline is then determined and 
measured for its real position and orientation according to the grid of 
coordinates. The measurements are taken as reference to the 
simulated outputs. The simulated AUV navigating paths are recorded 
and visualized graphically. The results are quantified and analyzed 
using correlation coefficient, simple mean and simple median. The 
equation for the correlation coefficient is [6]: 
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     To evaluate the performance, significant trials, have been carried 
out. The simulated output results after the implementation of 
supervisory fuzzy learning control technique is compared with the 
simulated output results from the decision of basic fuzzy controller. 
Here we only present one typical example.  
 

A. Simulated Output Resulted by Basic Fuzzy Controller 
Fig.7 and Table 1 showed the simulated navigation command 

output for tracking an occluded pipeline without the implementation 
of supervisory fuzzy control technique. In this case, the occluded 

pipeline is found in path no. 4 with the command output drifted away 
for as far as 21.9cm. 
 

 
Fig.7 Simulated AUV path without fuzzy supervisor 

 

 The statistical results are as follows: 
Correlation coefficient: 0.777736 
Arithmetic mean for simulated output: 73.7cm 
Median for simulated output: 68.0cm 
Arithmetic mean for actual location: 79.8cm 
Median for actual location: 79.8cm 
 

B. Simulated Output Resulted by Supervisory Fuzzy           
Learning Controller 
Fig.8 and Table 2 showed the simulated navigation command 

output for tracking an occluded pipeline with the implementation of 
supervisory fuzzy control technique. The fuzzy supervisor generates 
the occluded pipeline in path no. 4 with the command output drifted 
away for only 2.0cm. 
The statistical results are as follows: 
Correlation coefficient: 0.948069 
Arithmetic mean for simulated output: 78.5cm 
Median for simulated output: 77.5cm 
Arithmetic mean for actual location: 79.8cm 
Median for actual location: 79.8cm 

 
 

TABLE I 
DATA RECORDED WITHOUT FUZZY SUPERVISOR 

AUV 
path 

Actual location 
x-axis  (cm) 

Simulated output 
x-axis (cm) 

Drift 
(CM) 

5 100.0 94.8 -5.2 

4 89.9 68.0 -21.9 

3 79.8 77.5 -2.3 

2 69.7 63.1 -6.6 

1 59.6 65.3 +5.7 
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Fig.8 Simulated AUV path with fuzzy supervisor 

 
 

C. Simulated Output Resulted by Basic Fuzzy Controller 
 The RGB image size is 39790 pixels where the image width is 230 
pixels and image height is 173 pixels. By applying this image 
resolution to the system, we are able to obtain the result as presented. 
We would expect the results to be more accurate when an image with 
higher resolution is used.  
     However, handling images with higher resolution require more 
computer memory resources. It is important to note that this project 
requires merely approximate image information for the fuzzy inputs 
(i.e.: small area, medium area, large area, negative location, center 
location, or positive location). Thus, we can conclude that based on 
the results presented, the image resolution selected is able to provide 
accurate results.  

V. CONCLUSION 
 In this paper, we have presented an improvement on the control 
strategy in underwater target tracking and navigation. Clearly, the 
robustness of the method has improved. The research reveals the 
potential of implementing supervisory fuzzy learning controller in 
the application of underwater pipeline tracking. The system is able to 
continuously learn knowledge (data) and improve the navigation 
decisions. 

     The fuzzy supervisor uses any available data from the control 
system to characterize the system’s current behaviour so that it 
knows how to change the controller and ultimately achieve the 
desired specifications [8].  
     We have found the method to be very practical and have great 
potential usefulness for application in AUV target tracking.  
       

A. Systems limitation and implementation issues 
 The proposed system is demonstrated by a prototype and the 
algorithm is developed in a simulation software. When it comes to 
implementing a real time fuzzy control system, we would estimate 
facing the following problems: 
a)  Long computation time due to unsuitable processor and no 

 optimization of code structure.   
b)  Sensors and actuators interfacing problems due to unsuitable   
 controller hardware. 

B. Possible future work for improvements 
5.1   In this research a pragmatic and experimental approach has been 

adopted to evaluate and confirm the applicability of the 
implementation of supervisory fuzzy learning controller in 
underwater target tracking. However, there are some practical aspects 
that suggested require further investigations. They are: 
a)  The study of suitable hardware to be implemented for real time 

control. The hardware should include combination of the 
camera, frame grabber, fuzzy processor, controller, sensors and 
actuators. 

b)  The study of possible underwater hydrodynamic parameters 
(which requires more sensors) to be integrated into the fuzzy 
inference system. The hydrodynamic force naturally creates a 
very uncertain and unpredictable noise and it is recommended 
that the integration to be studied after suitable hardware is being 
implemented with acceptable and proven performance.   

c)  To further investigate and enhance the systems intelligence such 
as adaptive and auto-tuning capability for the fuzzy controller. 

d)    To incorporate other established techniques such as artificial 
neural network and expert system into the existing fuzzy 
inference system.   
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TABLE II 
DATA RECORDED WITH FUZZY SUPERVISOR 

AUV 
path 

Actual location 
x-axis  (cm) 

Simulated output 
x-axis (cm) 

Drift 
(CM) 

5 100.0 94.8 -5.2 

4 89.9 91.9 +2.0 

3 79.8 77.5 -2.3 

2 69.7 63.1 -6.6 

1 59.6 65.3 +5.7 
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