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Kesan-Kesan Pembebanan Pengisi dan Agen-Agen Gandingan Terhadap Sifat-

Sifat Komposit Polietilena Ketumpatan Tinggi Kitar Semula/Serat Kayu. 

 

ABSTRAK 

 

Polietilena ketumpatan tinggi kitar semula (rHDPE)/serat kayu (WF) komposit telah 

disediakan menggunakan Brabender Plasticorder pada suhu 160˚C dengan kelajuan 

rotor pada 50 rpm. Kesan pembebanan serat kayu dan agen gandingan ke atas sifat 

tegangan, penyerapan air, ciri-ciri morfologi, pencirian spektroskopi infra merah 

(FTIR), sifat degradasi terma (TGA) dan pencirian (XRD) terhadap komposit 

rHDPE/WF telah dikaji. Keputusan menunjukkan bahawa penambahan serat kayu telah 

mengurangkan kekuatan tegangan, pemanjangan pada takat putus dan jarak antara 

zarah, manakala modulus keanjalan, peratus keseimbangan penyerapan air, kestabilan 

terma dan nisbah orientasi kristal komposit meningkat.  Agen-agen gandingan seperti 

asid salisilik, maleik anhidrida dan phthalik anhdrida telah digunakan, di mana kesan 

positif pada sifat tegangan, penyerapan air, kestabilan terma dan peratusan 

penghabluran komposit rHDPE/WF telah dihasilkan. Kehadiran agen-agen gandingan 

meningkatkan kekuatan tegangan, modulus keanjalan, kestabilan terma dan nisbah 

orientasi kristal, akan tetapi menurunkan pemanjangan pada takat putus, penyerapan air 

dan jarak di antara zarah (d).  Keputusan pelbagai agen gandingan pada rHDPE/WF30 

komposit telah diperiksa.  Kajian mendapati komposit rHDPE/WFm/MAH menunjukkan 

kekuatan tegangan, modulus keanjalan, kestabilan terma dan nisbah orientasi hablur 

yang lebih tinggi diikuti dengan komposit rHDPE/WFm/PAH > rHDPE / WFm (serat 

kayu yang dirawat dengan asid salisilik) komposit > rHDPE / WF komposit mengikut 

turutan. Tambahan pula, lebih rendah pemanjangan pada takat putus, rendah peratusan 

keseimbangan penyerapan air dan jarak diantara zarah menjadi lebih kecil (d).  

Mikroskop penskanan elektron (SEM) permukaan patah tegangan bagi komposit dengan 

agen-agen gandingan menggunakan asid salisilik, maleik anhidrida, dan phthalik 

anihdrida menunjukkan bahawa interaksi antara permukaan dan lekatan di antara WF 

dengan permukaan rHDPE adalah lebih baik daripada komposit rHDPE/WF. 
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The Effects of Filler Loading and Coupling Agents on Properties of Recycled High 

Density Polyethylene/Wood Fiber Composites 

 

ABSTRACT 

 

The recycled high density polyethylene (rHDPE)/wood fiber (WF) composites had been 

prepared using Brabender Plasticorder at temperature 160˚C with rotor speed of 50 rpm.  

The effect of wood fiber loading and coupling agents on tensile properties, water 

absorption, morphology, spectroscopy infrared (FTIR) analysis, thermogravimetric 

analysis (TGA) and x-ray diffraction (XRD) of rHDPE/WF composites were 

investigated.  The results show that the addition of wood fiber reduced the tensile 

strength, elongation at break and interparticle spacing (d), whereas the modulus of 

elasticity, equilibrium water absorption percentage, thermal stability, and the crystal 

orientation ratio of composites increased.  The coupling agents such as salicylic acid, 

maleic anhydride, and phthalic anhydride were used, which resulted in positive effect on 

tensile properties, water absorption, thermal stability and percentages of crystallinity of 

rHDPE/WF composites. Whereas the presence of coupling agents had increased the 

tensile strength, modulus of elasticity, thermal stability and crystal orientation ratio but 

decreased the elongation at break, water absorption and interparticle spacing (d).  The 

results of various coupling agents on properties of rHDPE/WF30 composites have been 

examined.  The study was showed that rHDPE/WFm/MAH composites showed higher 

tensile strength, modulus of elasticity, thermal stability and crystal orientation ratio 

followed by rHDPE/WFm/PAH composites > rHDPE/WFm (wood fiber treated salicylic 

acid) composites > rHDPE/WF composites in orders.  Furthermore, lower the 

elongation at break, lower percentage equilibrium water absorption and lower 

interparticle spacing (d).  The scanning electron microscopy (SEM) micrographs of 

tensile fracture surfaces for the composites with coupling agents of salicylic acid, 

maleic anhydride, and phthalic anhydride indicated that the interfacial interaction and 

adhesion between WF and rHDPE phases were better than rHDPE/WF composites. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1. Research Background 

 

High amount of waste generated, non-biodegradability and fast depletion of natural 

resources was the reason of plastic becomes major problem nowadays.  Wood also 

implies the problem with lesser degree than plastic where trees and forests are becoming 

more depleted and its waste are either burned or disposed resulting in extra 

consumption, depletion and pollution of nature (Bovea et al., 2010; Astrup et al., 2009). 

 

Wood plastic composite (WPC) is a product which can be produced from plastic 

and wood.  WPC is a composite that consisted of mixture of wood waste and polymeric 

materials and WPC composite also has rapid growing usage nowadays (Soury et al., 

2009).  This WPC composite can help reduce solid waste content and conserves the 

natural resources thus allow of saving costs, energy and reduce depletion virgin 

materials.  In addition, sustainability of materials over incoming years can be assured 

for future generation's use (Talbot, 2013). 

 

It is well known that recycling contributes to a reduction in resources consumption 

and pollution.  For example, the technology developed by Waste and Resources Action 

Programme (WRAP) for the recycling HDPE milk bottles from kerbside and brings 

scheme collections in the United Kingdom reported by Kosior, (2006).  The results from 
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the rheological tests, processing tests and the mechanical tests show that the recycled 

HDPE is technically very similar to the virgin resin used to make milk bottles.   

 

The recycled HDPE content was lowered 30 % of transparency compared to virgin 

HDPE.  The other differences that were noted are the presence of gels and black specks 

and the odor after processing, however, these were not at a level that detracted from us 

as a commercially acceptable bottle.  According to Adhikary et al., (2008a) reported 

that the composites made from post-consumer recycled HDPE are shown better 

mechanical properties than composites from virgin HDPE in similar to or in some cases. 

 

Earlier studies show that the recycled HDPE properties were not largely different 

than the virgin HDPE and the cost also less expensive from those of virgin HDPE. 

Therefore, recycled HDPE can be used for many applications while offering the vision 

of subsiding waste disposals and decreasing the costs of product (Adhikary et al., 

2008a; Lu & Oza, 2013) studied the mechanical properties of hemp fiber with virgin 

and recycled high density polyethylene matrix. From the findings, they indicated that 

hemp fiber composites with recycled HDPE matrix performed better than composites 

with virgin HDPE in mechanical and thermo-mechanical properties.   

 

Rheological analysis shows the normal flow of recycled LDPE can be promoted by 

virgin LDPE and thus mobility of chain segments in flow are improved. As a result, 

blend with recycled LDPE and virgin LDPE has better rheological and processing 

properties compared to recycled LDPE (Zhao et al., 2013).  One of the most important 

advantages of recycled high density polyethylene is its consistent density and melt flow 

index in majority of the recycling plants (Mishra & Yagci, 2008). 
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