UNIVERSITI MALAYSIA PERLIS

DECLARATION OF THESIS			
Author's full name : ABDULLAH OMAR ALI ALDHAIBANI			
Date of birth : 11 TH MARCH 1981			
Title : NEW SPECTRAL AMPLITUDE CODING OCDMA SYSTEM			
USING ADAPTIVE MULTICARRIER MODULATION FOR			
NEXT GENERATION NETWORK			
Academic Session : 2015/2016			
I hereby declare that the thesis becomes the property of Universiti Malaysia Perlis (UniMAP) and to be placed at the library of UniMAP. This thesis is classified as:			
CONFIDENTIAL (Contains confidential information under the Official Secret Act 1972)*			
RESTRICTED (Contains restricted information as specified by the organization			
where research was done)*			
OPEN ACCESS I agree that my thesis is to be made immediately available as			
hard copy or on-line open access (full text)			
I, the author, give permission to the UniMAP to reproduce this thesis in whole or in part for the			
purpose of research or academic exchange only (except during a period of years, if so			
requested above).			
Certified by:			
SIGNATURE SIGNATURE OF SUPERVISOR			
(NEW IC NO. / PASSPORT No.) PROF. DR. SYED ALWEE ALJUNID SYED JUNID			
(NEW IC NO. / PASSFORT NO.) NAME OF SUPERVISOR			
Date: 4/7/2015 PROF. DR. SYED ALWED ALJUNID SYED JUNID			
PUSAT PENGURUSAN PENYELIDIKAN & INOVASI			

NOTES: * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentially or restriction.

ACKNOWLEDGEMENT

Praise and thanks to Allah (SWT) who gave me the strength and courage to proceed with our entire life. My most special thanks to Prof. Dr. Syed Alwee Aljunid, for supporting me through the doctoral process and for his academic advice. His guidance, ideas, encouragement, affable nature, kindness and support were greatly helpful. Even with his busy schedule, he spent considerable amount of time helping me through the different phases of this project. I would also like to thank my co-supervisor Prof. Madya. Ir. Anuar Mat Safar for his kind support, and suggestions. I would like to express sincere thanks to my co-supervisor Dr. Amir Razif (Allah Yarhamah) for his invaluable guidance throughout this project. Special acknowledgement to Dr. Rashidi Che Beson, for his valuable suggestions and for the many interesting discussions I have had with him. A special acknowledgment must be given to AL-Sheikh Eng. Abdullah Ahmed Bogshan for his help and support during my study.

I wish to thank my parents, my brothers and sisters for their daily prayers, giving me the motivation and strength, and encouraging me to accomplish and achieve my goals.

Last but not least, sincere thanks and gratitude to my lovely wife Munerra and my daughters Rana who inspired me by their, courage, support and patience throughout the period of my study. Also I would like to extend my sincere appreciation to all who has helped me in one way or another, which whose names are not mentioned . I am very grateful having all of you beside me. Thank you very much.

Abdullah Omar Ali Aldhaibani.

Universiti Malaysia Perlis (UniMAP)

TABLE OF CONTENTS

PAGE

DECLARATION OF THESIS	i
ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	ix
LIST OF FIGURES	X
LIST OF ABBREVIATIONS	xiii
ABSTRAK (MALAY)	xvi
ABSTRACT (ENGLISH)	xvii
CHAPTER 1 INTRODUCTION	
1.1 Introduction	1
1.2 Problem Statement	2
1.3 Research Objectives	4
1.4 Scope of Works	5
1.5 Contributions of This Research	6
1.6 Thesis Outline	7

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction	8
2.2	Multiple Access Techniques	10

	2.2.1	Wavelength Division Multiplexing Access	11
	2.2.2	Time Division Multiple Access	13
	2.2.3	Optical Code Division Multiple Access	14
		2.2.3.1 The Spectrum-Amplitude Coding (SAC) OCDMA Network	19
2.3	Optical	l Hybrid Multiple Access	21
2.4	Optical	Modulation	23
	2.4.1	Pulsed Modulation Techniques	24
	2.4.2	Optical OFDM Modulation	26
		2.4.2.1 DCO-OFDM	32
		2.4.2.2 ACO-OFDM	33
2.5	Summa	ary	34
CHA	PTER 3 D	EVELOPMENT OF NEW SAC-OCDMA SYSTEM	
3.1	Introdu	iction	35
3.2	Method	dology	35
3.3	SAC-O	CDMA Code Design	37
3.4	Modifi	ed Double Weight (MDW) Code	39
	©	MDW Code Design Steps	39
	3.4.2	Properties of MDW Code	43
	3.4.3	Encoding/Decoding Process of MDW Code	44
3.5	Flexible	e Cross Correlation Code (FCC)	45
	3.5.1	Code Design Algorithm	46
	3.5.2	FCC Code Properties	48
3.6	RF-Mu	lticarrier Modulation: OFDM Modulation	51

	3.6.1	Cyclic Prefix for OFDM	54
	3.6.2	Direct Detection Optical OFDM	56
3.7	Principl	le of the Proposed OCDMA Using OFDM Scheme	56
3.8	Simulat	tion Analysis	58
	3.8.1	Design Parameter	59
		3.8.1.1 Distance	59
		3.8.1.2 Bit Rate	59
		3.8.1.3 Bit Error Rate	60
		3.8.1.4 Transmission Power	61
		3.8.1.5 Chip Spacing	61
		3.8.1.6 Received Power (Output Power)	61
		3.8.1.7 Noise Power	62
3.9	Summa	ry ce	62

CHAPTER 4 THEORETICAL ANALYSIS OF A SAC-OCDMA SYSTEM USING OFDM MODULATION AND A SCM/SAC-OCDMA SYSTEM

4.1	Introduc	ction	63
4.2	Noises i	in SAC-OCDMA Networks	63
	Q _{4.2.1}	Thermal Noise	64
	4.2.2	Shot Noise	65
	4.2.3	Phase Induced Intensity Noise (PIIN)	67
	4.2.4	Third Order Intermodulation (IM3)	68
4.3	Multiple	e Access Interference (MAI)	70
4.4	Detectio	on Schemes for SAC-OCDMA Systems	72
	4.4.1	AND Subtraction Technique	72

4.5	BER G Based o	eneration of an SAC-OCDMA System with OFDM Modulation on MDW Code	74
4.6	Perform MDW (nance of Subcarrier Multiplexed SCM/SAC-OCDMA System Using Code	83
	4.6.1	RF-Subcarrier Multiplexed SAC-OCDMA System Architecture	84
	4.6.2	The BER Analysis of an SCM/SAC-OCDMA System Based on MDW Code	86
4.6	Summa	ry	90
CHA	PTER 5 RI	ESULTS AND DISCUSSION	
5.1	Introdu	ction	92
5.2	OCDM	A/OFDM Mathematical Analysis Results	92
	5.2.1	Effect of the Number of Users on System Performance Considering All System Noises	94
	5.2.2	Variation of SNR as a Function of the Number of Users	95
	5.2.3	Effect of Number of Users on Average Signal Power	96
	5.2.4	Variation of BER as a Function of the Number of Users and Effective Power with MDW Code For a SAC-OCDMA_OFDM System	97
	5.2.5	Variation of BER as a Function of the Number of Users and Effective Power with FCC Code For the OCDMA_OFDM System	98
	\$.2.6	Variation of BER as a Function of the Number of Users and Effective Power for SCM/OCDMA-MDW and OFDM_OCDMA- MDW	99
	5.2.7	Relationship Between Received Power and PIIN Noise	100
	5.2.8	Effect of Received Power on Shot Noise	101
	5.2.9	The Effect of IMD3 Noise on the Number of Subcarrier	103
	5.2.10	Effect of Received Power P _{sr} on System Performance	104
	5.2.11	BER Variation as a Function of Various Data Rates for OCDMA_ OFDM and OCDMA with MDW Code	105

	5.2.12	BER Variation as a Function of Number of Data Rate for OCDMA_ OFDM and OCDMA with FCC Code	106
	5.2.13	Variation of BER with Number of Users by Considering the Effect of Weights for the OFDM/SAC-OCDMA System using MDW Code	107
	5.2.14	Variation of BER as a Function of the Number of Users and Effective Power for SCM/SAC-OCDMA_FCC	108
	5.2.15	Variation of Power Received with BER in an SCM/SAC-OCDMA System Based on FCC and MDW Codes	109
	5.2.16	BER Variation as a Function of Number of User for SAC- OCDMA_ OFDM and SAC-OCDMA Based on MDW Code	110
	5.2.17	BER Variation as a Function of Data Rate for SAC-OCDMA_ OFDM and SAC-OCDMA with MDW Code	111
	5.2.18	Variation of BER with Simultaneous Users for All Systems	112
	Simulat	ion Results	113
	5.3.1	The Electrical Spectra and Constellation Diagram	115
	5.3.2	The Effect of Cyclic Prefix on The Performance	116
	5.3.3	The Effect of Distance on Signal to Noise Ratio (SNR)	119
	5.3.4	The Effect of Distance on Total Power	120
6	5.3.5	Effect of Chip Spacing in The Network	120
0	5.3.6	SNR Variation as a Function of Data Rate	121
	5.3.7	Comparison Between Theoretical and Simulation Results for SAC- OCDMA/OFDM Modulation	122
	5.3.8	SAC-OCDMA/OFDM Modulation with Zero Cross Correlation Code Family	124
	SAC-O	CDMA/OFDM Modulation Application	126
	Summar	ry	128

5.3

5.4

5.5

CHAPTER 6 CONCLUSION AND FUTURE WORKS

6.1	Conclusion	129
6.2	Future Works	132
REFER	ENCES	133
LIST OI	FPUBLICATIONS	147
LIST OI	AWARDS	150
	OP/110	
	. nal co	
	origon	
	662	
	xecte	
	· spru	
	ren	
	This	

LIST OF TABLES

NO.		PAGE
3.1	The FCC code with $K = 4$, $W = 3$, $\lambda_c \leq 1$ and $N=9$	48
3.2	Typical OFDM system versus typical optical system	52
4.1	Important symbols and parameters used in equations	76
5.1	Parameters for mathematical analysis	93
5.2	Performance of SAC-OCDMA/OFDM system as data rate varied	106
5.3	Cardinality improvement of SAC-OCDMA/OFDMM over other systems	113
	© ``	

LIST OF FIGURES

NO.		PAGE
2.1	Comparison of three multiple access techniques TDM, WDM and OCDMA	11
2.2	WDMA block diagram	12
2.3	TDMA block diagram	13
2.4	Schematic diagram of an OCDMA system	15
2.5	Principle of SAC- OCDMA scheme	20
2.6	Hybrid WDM/OCDMA	22
2.7	Block diagram of a SCM/OCDMA system	23
2.8	Demonstrating SC pulsed modulation schemes, OOK and PPM	26
2.9	Comparison of Single carrier, General frequency division multiplexing and, Orthogonal frequency division multiplexing	28
2.10	Demonstrating SSM and MSM	29
2.11	An optical OFDM modulation at transmitter	31
3.1	Scope of new development SAC-OCDMA system using OFDM modulation	37
3.2	General form of the MDW code matrix	40
3.3	Flowchart for the MDW code design algorithm	44
3.4	MDW code encoder decoder implementation	45
3.5	Identification used in FCC code	48
3.6	Flowchart for the FCC code design algorithm	51
3.7	OFDM symbol with cyclic prefix	56
3.8	Schematic of the transmitter and receiver using amplitude spectral coding with OFDM	58
4.1	The spectrum of a nonlinear system with equally spaced tones and constant amplitude	70

4.2	AND subtraction technique	73
4.3	OFDM/SAC-OCDMA scheme	75
4.4	Bandwidth of broadband source at the receiver	78
4.5	Output spectrum of a nonlinear system excited by (n) equally spaced tones with constant amplitude	82
4.6	SCM/SAC-OCDMA based on MDW code	85
5.1	BER versus number of active users considering all noise	94
5.2	Performance of SNR versus simultaneous number of users for OCDMA system using OFDM modulation	95
5.3	Average signal power performance versus number of active users for the OFDM/SAC-OCDMA system	96
5.4	BER versus number of simultaneous users for the different values of P_{sr} based on the MDW code	97
5.5	BER versus number of simultaneous users for different values of P_{sr} based on FCC code	98
5.6	BER against the number of active users when <i>P</i> _{sr} is different for OFDM/SAC-OCDMA_MDW and SCM/SAC-OCDMA_MDW systems	99
5.7	PIIN noise versus received power (P_{sr})	101
5.8	Shot noise versus P_{sr} for various SAC-OCDMA codes using OFDM modulation	102
5.9	<i>IMD3</i> versus the number of subcarrier for SAC-OCDMA/OFDM system	103
5.10	BER versus received power	104
5.11	BER versus number of users with different data rate	105
5.12	BER versus number of users for SAC-OCDMA_OFDM system with FCC (W=4) code	106
5.13	BER versus number of user with different code weights	107

5.14	BER versus total number of users for the hybrid SCM/SAC-OCDMA system	108
5.15	BER versus power receives for SCM/OCDMA system based on MDW and FCC codes	109
5.16	Number of users versus BER for OFDM/SAC-OCDMA and SAC-OCDMA systems	110
5.17	BER versus number of users with various data rate	111
5.18	BER versus number of users for different systems	112
5.19	Block diagram of the SAC-OCDMA_OFDM system	114
5.20	(a) The electrical spectra of the optical OFDM signals at the transmitter	115
5.20	(b) The electrical spectra of the optical OFDM signals at the receiver	115
5.21	QAM constellation diagram for the received signal	115
5.22	SNR versus cyclic prefix points	117
5.23	Power penalty versus cyclic prefix points	118
5.24	Power receive (P_{sr}) versus cyclic prefix points	118
5.25	SNR versus fiber lengths	119
5.26	Total power versus distance for proposed system	120
5.27	The effect of spacing on SNR and distance	121
5.28	SNR versus the data rate with different distances	122
5.29	Signal power versus distance	122
5.30	SNR versus distance for SAC-OCDMA/OFDM system	123
5.31	Implementing of SAC-OCDMA with OFDM modulation based on MD code using direct detection technique	124
5.32	BER versus different values of data rate	125
5.33	BER versus distance	126

LIST OF ABBREVIATIONS

BER Bit Error Rate

- BPSK **Binary Phase Shift Keying**
- BS **Brillouin Scattering**
- **CDMA Code Division Multiple Access**
- CD Chromatic Dispersion
- CSK
- CP
- CW
- DPSK
- ...unuous Wave Differential Phase-Shift Keying differential Quaternary Phase De-Multir¹ DQPSK
- DMUX
- Erbium Doped Fiber Amplifier **EDFA**
- Enhanced Double Weight EDW
- Fiber Bragg Grating FBG
- FCC Flexible Cross Correlation
- FFT Fast Fourier Transform
- FSO Free Space Optics
- FTTH Fiber To The Home
- FWM Four Wave Mixing
- Gb/s Gigabit per second
- ICI Inter-Carrier Interference
- IFFT Inverse Fast Fourier Transform
- Third Intermodulation Distortion IMD3

- ISI Inter-symbol Interference
- LAN Local Area Network
- LED Light Emitting Diode
- LiNbO3 Lithium-Niobate
- MAI Multiple Access Interference
- Mega bit per second Mb/s
- **Multi-Carrier Modulation** MCM
- MD Multi Diagonal
- MDW Modified Double Weight
- MFH Modified Frequency Hoping
- MOD Modulator
- oriesnal copyright MQC Modified Quadratic Congruence
- Multiple-Subcarrier Modulation MSM
- MUX Multiplexer
- Mach-Zehnder MZ
- Non Return to Zero NRZ
- OOC Optical Orthogonal Code
- **Optical Electrical Modulator** OEM
- **OCDMA Optical Code Division Multiple Access**
- OOK **On-Off Keying**
- **OFDM** Orthogonal Frequency Division Multiplexing
- **OSCDM** Optical Spectrum Code Division Multiplexing
- PAPR Peak-to-Average-Power Ratio
- PIIN Phase Induced Intensity Noise
- Positive Intrinsic Negative PIN

- PMD Polarization Mode Dispersion
- PON Passive Optical Networks
- PRBS Pseudo Random Binary Sequence
- PSD Power Spectral Density
- QoS Quality of Service
- QAM Quadrature Amplitude Modulation
- RD Random Diagonal
- RF Radio Frequency
- RoF Radio Over Fiber
- RZ Return to Zero
- SAC Spectral Amplitude Coding
- SCM Subcarrier Multiplexing
- SC Single Carrier
- SLD Super Luminescent Diode
- SMF Single Mode Fiber
- SNR Signal to Noise-Ratio
- SSM Single-Subcarrier Modulation
- SPC Spectral Phase Coding
- TDM Time Division Multiplexing
- TDMA Time Division Multiple Access
- PSK Phase-Shift Keying
- PPM Pulse-Position Modulation
- WAN Wide Area Network
- WDM Wavelength Division Multiplexing
- WDMA Wavelength Division Multiple Access

orieinal copyright

Sistem Baru Spektrum Amplitud Pengekodan OCDMA Menggunakan Adaptive Multicarrier Modulation Untuk Rangkaian Generasi Masa Depan

ABSTRAK

Teknik pengekodan kod optik spektrum Amplitud multi capaian (SAC-OCDMA) membolehkan ramai pelanggan untuk berkongsi rangkaian yang sama serentak dan tak serentak dengan memperuntukkan satu kod yang khusus untuk setiap pelanggan. Prestasi sistem SAC-OCDMA ditentukan oleh pelbagai parameter seperti kadar data, jumlah pengguna serentak, kuasa pemancar dan penerima, dan jenis kod. Oleh itu, sistem SAC-OCDMA mempunyai had dalam bilangan pengguna dan kadar bit kerana gangguan multi capaian (MAI), yang dianggap sebagai faktor kemerosotan dominan dalam sistem SAC-OCDMA. Dalam kajian ini, satu pendekatan baru kepada sistem SAC-OCDMA dengan penyesuaian modulasi multicarrier (OFDM) telah dibangunkan untuk menampung jumlah pengguna yang besar, meningkatkan keupayaan sistem, dan mengurangkan degradasi sistem. Sistem yang dicadangkan itu telah dibina menggunakan kod dari keluarga MDW, yang mempunyai pelbagai kelebihan berbanding kod lain termasuk pembinaan kod yang mudah, reka bentuk pengekod/penyahkod yang mudah, kewujudan abgi setiap nombor asli n, korelasi-balas ynag sesuai($\lambda = 1$) dan SNR yang lebih tinggi . Rangka kerja baru matematik untuk mengira SNR dan BER sistem SAC-OCDMA menggunakan penyesuaian modulasi berbilang pembawa (OFDM) telah dibangunkan dan dianalisis berdasarkan teknik AND pengesanan. Ia menyediakan penggunaan spektrum yang lebih baik, menjana jumlah yang lebih tinggi daripada sub-pembawa, dan meningkatkan kadar penghantaran menggunakan komponen optik kos rendah oleh modulasi M-ary pada sub-pembawanya. Selain itu, model matematik dan hasil, berdasarkan kod dan teknik pengesanan yang sama untuk menguji semua reka bentuk yang mungkin, telah dihasilkan untuk sistem SCM/SAC-OCDMA. Berdasarkan pengiraan matematik, sistem SAC-OCDMA dengan penyesuaian modulasi berbilang pembawa (OFDM) telah menunjukkan prestasi yang membanggakan berbanding SCM/SAC-OCDMA dan sistem SAC-OCDMA konvensional. Keputusan teori dan simulasi telah dinilai berdasarkan BER dan bilangan pengguna dan juga jumlah kuasa dikekalkan. Perisian Optisys (Versi 12) telah digunakan untuk mensimulasikan sistem yang direka. Sistem yang dicadangkan memberi prestasi yang lebih baik dengan mengekalkan lebih kurang 40% kuasa serta meningkatkan bilangan pengguna dua kali ganda berbanding dengan sistem SCM/SAC-OCDMA. Pembesaran prestasi, dari segi bilangan pengguna, untuk SAC-OCDMA dengan modulasi multicarrier penyesuaian (OFDM) berbanding dengan sistem SCM/SAC-OCDMA adalah dua kali dan tiga kali berbanding sistem SAC-OCDMA konvensional berdasarkan kod MDW. Pembangunan sistem baru ini telah menyumbang kepada peningkatan sistem SAC-OCDMA dengan mengurangkan gangguan, meningkatkan kadar data saluran, mengekalkan kuasa, dan meningkatkan bilangan pengguna. Oleh itu, sistem ini boleh menjadi penyelesaian mutlak untuk rangkaian akses kapasiti yang tinggi simetri kerana kecekapan spektrum yang tinggi, keberkesanan kos, fleksibiliti yang baik, dan keselamatan yang dipertingkatkan. Ciri-ciri ini menjadikan ia calon menarik bagi rangkaian jalur lebar akses generasi akan datang.

New Spectral Amplitude Coding OCDMA System Using Adaptive Multicarrier Modulation for Next-Generation Networks

ABSTRACT

The spectral amplitude coding optical code division multiple access (SAC-OCDMA) technique enables many subscribers to share a network simultaneously and asynchronously by allocating a specific code to each subscriber. The performance of the SAC-OCDMA systems is governed by numerous parameters such as the data rate, number of simultaneous users, the powers of the transmitter and receiver, and the type of codes. Therefore, a SAC-OCDMA system has limitations in the number of users and bit rate because of multiple access interference (MAI) which is considered to be the dominant degradation factor in SAC-OCDMA systems. In this work, a new approach to the SAC-OCDMA system with Rf-subcarrier such as adaptive multicarrier modulation (OFDM) has been developed, to accommodate a large number of users, enhance the system capacity, and decrease the system degradation. The proposed system has been built using the modified double weight (MDW) code family, which has various advantages over other codes including easy code construction, simple encoder/decoder design, existence for every natural number n, ideal cross-correlation ($\lambda = 1$) and a higher SNR. A new mathematical framework to calculate the SNR and the BER of the SAC-OCDMA system using adaptive multi-carrier modulation (OFDM) has been developed and analysed based on the AND detection technique. It provides better spectrum use, generates a higher number of sub-carriers, and increases transmission rates using lowcost optical components by M-ary modulation on its sub-carriers. In addition, mathematical models and results, based on the same code and detection technique in order to test all possible design, have been generated for the Rf-SCM/SAC-OCDMA system. Based on the mathematical calculations, the SAC-OCDMA system with adaptive multi-carrier modulation (OFDM) has shown superior performance compared to Rf-SCM/SAC-OCDMA and conventional SAC-OCDMA systems. The theoretical and simulation results have been evaluated based on the BER and number of users as well as on the amount of power maintained. Optisys (version 12), software was used to simulate the designed system. The proposed system gave better performance and maintained approximately 40% of power as well as increased the number of users twofold compared to Rf-SCM/SAC-OCDMA system. Augmentation in performance, in terms of the number of users, for SAC-OCDMA with adaptive multicarrier modulation (OFDM) compared to a conventional SAC-OCDMA systems based on MDW code is more than three times. The development of this new system has contributed to SAC-OCDMA system improvement by mitigating the interference, enhancing the channel data rate, maintaining the power, and increasing the number of users. Thus, this system could be a promising solution to symmetric high capacity access networks because of its high spectral efficiency, cost effectiveness, good flexibility, and enhanced security. These features make it an attractive candidate for next-generation broadband-access networks.

CHAPTER 1

INTRODUCTION

1.1 Introduction

Currently, telecommunication systems and networks are extended to provide a variety of multimedia applications such as video streaming, voice-over-IP and gaming. The resulting demand for bandwidth requires a network infrastructure that has a large capacity and is reconfigurable. Optical fibres can fulfil the bandwidth demand of future information networks through optimizing the available bandwidth by multiplexing low-rate data streams onto optical fiber. For this purpose, multiple access schemes, such as Time Division Multiple Access (TDMA), Wave Division Multiple Access (WDMA), and Optical Code Division Multiple Access (OCDMA), are required for multiplexing and demultiplexing data flow.

The multiplexing technique is the process whereby several optical signals are combined before being transmitted through a fiber optic (Kolimbiris, 2004). In other words, multiplexing techniques are multiple access communication systems whereby a number of users share a common transmission media to transmit their messages to a number of destinations.

In recent years, OCDMA has been an emerging research area that has attracted a lot of research interest because of the demand for OCDMA application in optical networks. It offers a large bandwidth, security, and flexibility in high speed access networks. Moreover, OCDMA has some unique advantages such as, asynchronous transmission with low latency access, dynamic bandwidth assignment, soft capacity on demand, random and simultaneous access protocols, simplified network control, effective bandwidth utilization, increased flexibility in quality of service control (Prucnal, Santoro, & Fan, 1986) and enhanced network security (Chung, Salehi, & Wei, 1989). Different multiplexing techniques are discussed in more detail in chapter 2.

1.2 Problem Statement

Huge demand for multimedia data, higher data speeds (such as for highdefinition video) and an increasing number of users are putting pressure on optical transmission systems and network vendors to offer higher data rates (Shaddad, R. Q., et al., 2012). Reducing this pressure could be achieved by using optical techniques that can provide sufficient bandwidth for these applications (Elmagzoub, M. A., et al., 2014). Therefore, there is a search for a sufficient optical approach that enables the necessary bandwidth to accommodate a large number of users, high data rates, and intensive applications at a cost-effective rate. For this purpose, multiple access schemes such as OCDMA, optical TDMA and optical WDMA, are required for multiplexing and demultiplexing data flow. The operation of an OTDMA system is limited by the timeserial nature of the technology. Each receiver should operate at the total bit rate of the system. The OTDMA system requires synchronization and centralized control. The users are allocated a specific time slot. However in OCDMA system, users can operate asynchronously and access the network independently.

In WDMA systems, the available optical bandwidth is divided into fixed wavelength channels that are used concurrently by different users. Thus, an issue with WDMA is that wavelength-cardinality is limited, in that the WDMA systems can only handle traffic on an optical channel of the wavelength path. This may waste wavelength resources.

In recent years, OCDMA has received more attention because of its potential for enhanced information security, simplified and decentralized network control, allowing many users to share the same transmission medium synchronously and simultaneously as well as for increased flexibility in the granularity of bandwidth that can be provisioned (Sahbudin, et al., 2009; Salehi J A, 2007; Stok & Sargent, 2002a; Weng & Wu, 2001).

There are several challenges, such as multiple access interference (MAI), which results from other users transmitting at the same time and on the same common channel (Aljunid, Ismail, et al., 2004a). Furthermore, there are other noises arising from the physical effect of the system design itself, such as phase induced intensity Noise (PIIN), thermal noise, and shot noise (Shin-Pin & Jingshown, 2010). The PIIN is related to the MAI because the overlapping (cross-correlation function) of the spectra from different users (Aljunid, Ismail, et al., 2004a). Moreover, increases in cardinality (number of simultaneous users) results in long code length and weight. As a consequence, the (PIIN) increases, causing deterioration in BER and system performance. In addition, the spectral amplitude coding optical division multiplexing (SAC-OCDMA) is needed to improve the spectral efficiency. There are several optical modulation techniques used in an OCDMA system such as on-off keying (OOK) but it is not efficient at very small duty cycles. Consequently, it is more appropriate to code the information into the position of the pulse such as in pulse-position modulation (PPM). PPM imposes more system complexity than OOK because both slot- and symbol-level synchronizations, critical to system performance, are required at the receiver. Multipath propagation induces inter-symbol interference (ISI) and PPM is particularly sensitive to the dispersive effects of the optical channel due to the required bandwidth (Audeh, M. D. 1996).

To avoid ISI channels, single carrier (SC) pulsed modulation is used, but it results in severe performance penalties. Several equalization techniques, for example, using linear and decision feedback equalizers (DFEs), are considered to mitigate the effects of ISI at high data rates and it, as well, is required for detecting the aggregate high-speed bit stream. The drawbacks of SC pulsed modulation are overcome by using an alternative modulation technique—multiple-subcarrier modulation (MSM).

Hybrid subcarrier multiplexing (SCM) has increased the number of users and enhanced the channel data rate for OCDMA systems, but an SCM/OCDMA system has the disadvantage of being limited, by the available bandwidth of the electrical and optical components, in the maximum subcarrier frequencies and data rates. Adaptive multi-carrier OFDM modulation avoids these problems by generating a huge number of sub-carriers, as it is more accurate to assign a limited number of sub-carriers for each user. Moreover, OFDM is an effective solution to inter-symbol interference caused by a **1.3 Research Objectives** Otected by The aim of T

The aim of this research is to develop a new spectral amplitude coding OCDMA system using adaptive multicarrier modulation for next-generation networks which can be superior to the performance of SAC-OCDMA systems. To achieve the aim of this research, the following objectives can be summarized as:

- To develop a new approach to SAC-OCDMA systems with OFDM modulation to enhance the system capacity and decrease the system degradation.
- To develop a mathematical model of the new SAC-OCDMA system using OFDM modulation based on an AND detection technique.

- To analyse the theoretical and simulated performance of the SAC-OCDMA system using OFDM modulation.
- To analyse the performance of an SCM/SAC-OCDMA system based on the MDW code family with the AND detection technique.

1.4 Scope of Work

Currently, internet network architecture can be divided into several different layers according to, each layer's specific function, components, and protocols. The scope in this research is the physical layer-which defines the physical specifications for devices—and the relationship between a device and a transmission medium. In the case of fiber-optical networks, the transmission medium is optical fiber. The physical layer is involved in converting electronic data into modulated light signals and transmitting it through the optical fiber. To transmit the data for multiple users, multiplexing, multiple access techniques are used here. Standard parameters that are considered here are the bit-error rate (BER), signal to noise ratio (SNR), and receiver power and loss. In this work the focus is on the security issues of the physical layer. A spectrum amplitude code division multiplexing technique (SAC-OCDMA) is used and applied to secure and protect the data transmitted through networks and to conduct decryption of the received data before passing it to the application layer. Also, here there is a focus on OFDM modulation techniques to increase the overall performance of the system based on an MDW code family. In addition to using subcarrier multiplexing with the SAC-OCDMA system, the subcarrier techniques are compared with conventional systems as well as the comparison between hybrid SCM and OFDM modulation techniques with conventional SAC-OCDMA system.

In this work, Firstly, a new optical orthogonal frequency division multiplexing (OFDM) modulation with spectrum amplitude coding optical code division multiple access (SAC-OCDMA) system is developed. Secondly, developing the mathematical model for a new SAC-OCDMA system using adaptive OFDM modulation and comparing it with both hybrid SCM/SAC-OCDMA and conventional SAC-OCDMA systems. Considering back to back systems, which mean no effect of the distance impairment. Lastly, the performance simulation of the SAC-OCDMA system using adaptive OFDM is provided. Optisys software was used for the simulation. malcop

1.5 **Contributions of This Research**

A new approach for spectral-amplitude coding systems is developed to enhance the performance of OCDMA systems using OFMD modulation. The proposed contributions are summarized in the following:

- A new SAC-OCDMA system with adaptive multicarrier modulation OFDM) was developed.
- A new mathematical model of the SNR and BER for the new system with an AND detection technique based on MDW code family has been developed and thoroughly analyzed.
- III. Development of a SCM/SAC-OCDMA system and its mathematical model of SNR and BER based on an MDW code family with same detection technique were performed.

1.6 Thesis Outline

This thesis comprises of six (6) chapters, and it is organized as follows:

i. Chapter 1 is an overview and problem statement that clarifies the driving force and motivating aspect, together with the objectives, scope of work, contributions and thesis layout.

ii. Chapter 2 a literature review of OCDMA communication systems and optical hybrid multiple access and optical modulation techniques. In addition, some optical modulations such as optical orthogonal frequency division multiplexing (OFDM) and pulsed modulation techniques are described.

iii. In chapter 3 the research methodology is described and a detailed explanation of the design of codes used for the spectral amplitude coding OCDMA system, known as the modified double weight (MDW) code and flexible crosscorrelation (FCC) code is given. The OFDM modulation with direct detection technique also described and simulation analysis.

iv. In chapter 4 the proposed signal-to-noise ratio (SNR) mathematics for a SAC-OCDMA system using OFDM modulation and a SCM/SAC-OCDMA system based on MDW code is presented.

v. In chapter 5 the results and the performance analysis of the new system using MDW and FCC codes are discussed and the feasibility of the system is demonstrated.

vii. Chapter 6 is the conclusion of the thesis; the most important ideas are summarized, and ideas for future work are given.

7