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Keratan Rentas Optimum Kekuda Satah  dengan Rentang dan Kedalaman yang 

Pelbagai 

ABSTRAK 

Kekuda keluli digunakan secara meluas di dunia dan wujud motivasi berterusan untuk 

penyelidikan di dalam rekabentuk struktur optimum. Di dalam kejuruteraan awam, 

kekuda yang mempunyai berat optimum amat penting untuk pengangkutan dan 

pengurangan kos elemen dan juga kerja pembinaan sambungan  yang dipermudahkan. 

Satu lagi kelebihan kekuda yang mempunyai berat optimum ialah perkongsian kapasiti 

beban yang minimum yang ditanggung oleh struktur itu sendiri. Pengoptimuman 

struktur juga amat penting dalam industri pesawat dan kereta yang mana struktur yang 

lebih ringan membawa maksud ekonomi tenaga yang lebih baik. Sewajarnya, banyak 

rujukan sejak dua dekad terakhir dalam analisis, rekabentuk dan pengotimuman kekuda. 

Tetapi, masih sedikit bilangan penyelidik terlibat dalam masalah parameter keratan 

rentas kekuda. Rekabentuk pengoptimuman kekuda perlu dilakukan mengikut dua 

keperluan penting. Pertama, susun atur geometri terbaik untuk anggota struktur dan nod 

perlu dikenalpasti, dan kedua adalah keratan rentas mencukupi perlu dikenalpasti. 

Kebiasaanya, wujud keperluan bentuk yang optimum dan agihan keratan rentas yang 

diadaptasi untuk beban luaran. Banyak kajian lepas menggunakan luas keratan rentas 

sebagai pemboleh ubah rekabentuk berterusan, walaupun, penggunaan prosedur 

pengoptimuman berterusan adalah lebih tepat, tetapi ia akan menjurus kepada saiz yang 

tidak wujud dan sebarang percubaan untuk mengantikan nilai tersebut kepada nilai 

terdekat boleh menjadikan kerja rekabentuk tersebut lebih berat. Kesannya, 

penyelesaian luas akan mencukupi jika prosedur rekabentuk memasukkan pengunaan 

luas keratan rentas sebagai pembolehubah rekabentuk diskrit daripada saiz yang ada, 

dan juga jika rekabentuk tersebut mengambil kira bentuk keratan rentas yang effektif 

pada permulaan proses. Ini adalah topik untuk penyelidikan ini iaitu untuk mengkaji 

kesan bentuk keratan rentas pada masalah kekuda satah optimum. Ini akan dilakukan 

menggunakan kaedah elemen tak terhingga dan elemen linear mudah dengan bantuan 

analisis struktur keluli dan perisian rekabentuk STAAD. Untuk tujuan itu, empat 

keratan keluli guling iaitu sesiku, tiub, saluran, dan paip yang digunakan dalam industri 

kekuda bumbung, dipertimbangkan dalam kajian ini. Tambahan lagi, dalam penghasilan 

komponen strucktur, faktor ciri-ciri bukanlah factor tunggal yang dipertimbangkan, 

tetapi, faktor geometri juga adalah penting yang diwakili oleh faktor bentuk komponen, 

iaitu satu pengukuran kecekapan dalam penggunaan bahan. Hasil kajian ini 

membuktikan bentuk keratan rentas yang dipilih mempunyai kesan penting pada berat 

optimum kekuda dengan geometri, beban dan penyokong yang sama. Keratan rentas 

paip dan tiub menawarkan berat kekuda yang paling kurang. Mansard dan Pratt adalah 

kekuda yang paling baik pada nisbah rentang kepada kedalaman bersamaan dengan 

enam. 
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Cross section optimization of Plane Trusses for Different Spans and Depths 

ABSTRACT 

Steel trusses are widely utilized in real-world applications and a continuing motivation 

for research in optimal structural design exists. In civil engineering, weight optimized 

trusses are convenient since the easier transportation and less costly structural parts as 

well as construction work in connection with the build-up is simplified. One more 

advantage of developing a weight optimized truss is the fact that the minimum share of 

the load capacity is enrolled by the structure itself. Structural optimization is also very 

important in the aircraft and car industry whereas a much lighter structure often means a 

much better energy economy. Accordingly, a rich literature has advanced within the last 

two decades in analysis and design as well as optimization of truss. Still, only a 

diminutive number of researchers dealt with the problem of parameterization of the 

truss cross section. The optimization design of trusses needs to be carried out in 

accordance to two essential requirements. First the best geometrical layout for members 

and nodes requires being determined, and second the best adequate cross-sections need 

to be determined. Generally there is need to exist an optimum shape and a cross-section 

distribution that is definitely adapted for external loads. Many previous studies, use the 

areas of cross sections as a continuous design variable, although, the use of a continuous 

optimization procedure usually more accurate, but it will lead to non-available sizes and 

any trail to replace those values by the nearest available sizes can make the design 

unnecessarily heavier. Consequently, solution of the area will be adequate if the design 

procedure includes the use of cross-sectional areas as discrete design variable from 

available sizes, as well as if the design takes into account the effective cross section 

shape at the start of process. This is the topic of this paper, to study the effect of the 

cross section shape on the optimization of plane trusses problem. This is going to be 

done by using finite element method and simple linear element with the aid of steel 

structural analysis and design STAAD software. Four rolled steel sections (angle, tube, 

channel, and pipe) which are used in industrial roof trusses are applied for this purpose. 

Furthermore, in producing a structure element, the material properties is not the only 

factor considered, however, the geometry properties also is vital factor to be considered 

which is represented by component’s shape factor, that measures the efficiency of the 

material usage. Outcome results of this research prove that the chosen cross section 

shape has a significant effect on the optimum truss weight for exact same geometry of 

the truss type under the similar circumstances of loading and support. Pipe and tube 

section shapes offer least truss weight. The best truss shape and topology concerns with 

Mansard and Pratt truss topology at span over depth ratio of six. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

The expression optimal structure is extremely vague. The reason is a structure 

may be optimal in different aspects. These different aspects are known as objectives, 

and can for instance be the weight, cost or stiffness of the structure. Consequently, 

structural optimization is the subject of making an assemblage of materials to sustain 

loads in the best way. The first such specification that comes to mind may be to make 

the structure as light as possible to minimize weight. Another idea of “best” could be to 

make the structure as stiff as possible, and yet another one could be to make it as 

insensitive to buckling instability as possible. Clearly, such maximizations or 

minimizations cannot be performed without any constraints. For instance, if there is no 

limitation on the amount of material that can be used, the structure can be made stiff 

without limit, and we have an optimization problem without a well-defined solution 

(Klarbring, 2008). 

Structural optimization offers an organized strategy to use further than the 

standard analysis of a few candidate structures that have been selected depending on 

designer’s experience and intuition. According to Coello, Rudnick, & Christiansen 

(1994), Galileo Galilei definitely seems to be the first scientist to research structural 

optimization in his work on the bending of beams. Advanced optimization strategies 

with developed computer facility assist to obtain new better designs which would likely 

be otherwise remained undiscovered. The optimum design of a truss should satisfy the 

minimization of the truss cost within the role of various constraints such as proper stress 
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levels, displacement limits and element stability conditions. However, weight 

optimization plays a major role in engineering fields due to its significant effect to 

overall costs. So, the optimization should be carried out with as little material as 

possible. The fundamental concepts of structural optimization have been presented in 

the text books of Vanderplaats (1984), Arora (1989), Haftka & Gürdal (1992), and 

Farkas & Jármai (1997). 

Generally, the basic approaches of structural optimization for trusses could be 

divided into three sub problems: sizing, shaping, and topology optimization. 

In sizing optimization, the idea is to change the cross-section dimensions or 

properties until finding the most adequate cross-sections that gives a suitable profile for 

each truss member for external loads (Gil & Andreu, 2001). Cross-sectional 

optimization, the most heavily researched of these three techniques. Considers a fixed 

topology and geometry (the number of beams and joints, their connection, and 

locations) and gets the shape of the beams that will be the best. Either in terms of mass 

or stiffness, support a certain set of loads. The parameters of the structure that are 

changed during optimization, called the design variables Such as, the radius 

and thickness of each tube element. An example of this technique in practice is the 

design of the beams that are used to build utility transmission towers whereas savings 

of only some hundred dollars in material costs, while multiplied by the thousands of 

towers required for a new transmission way, will be a considerable gain (Hansen & 

Vanderplaats, 1990; Smith, Hodgins, Oppenheim, & Witkin, 2002). In this sizing 

optimization, the requirements of appropriate steel design code such as British standard 

5950-1:2000 and other relevant recommendations BS 6399-1, BS 6399-3 have to be 

taken into consideration to ensure the optimized structure will be usable. The use of 
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design code and considerations provides on several constraints which are easily 

executed in this method with desecrate design variables and by aid of STAAD program. 

The design of the structural shape based on engineer’s criteria partly depends on 

aesthetical, economical, construction techniques and environmental aspects. 

Furthermore, in the shape optimization, the target is to find the best geometrical layout 

of the members and nodes, and the nodal coordinates of the truss with fixed topology 

are chosen as design variables (Ohsaki, 1998).  

Topology optimization is to seek the best loading path in the unlimited topology 

combinations by changing the amount and location of materials to save the most 

materials (Ruiyi, Gui, & Zijie, 2009). 

This study is going to use Finite element method by the aid of STAAD Pro 

software for analysis and sizing optimization design for six trusses types which are 

common used for spans from 12m to 30ms. These trusses will be considered as models 

to analyse the impact of sections shape on the optimal truss weight. Hence, four light 

weight commonly used sections are applied for this purpose (see Fig. 1.1).  

   

Figure 1.1: Common light weight sections of roof trusses (Davison & Owens, 2012) 

Besides, many of previous existing researches employ the areas of cross sections 

as design variables without heightening to the shape of cross section at the beginning of 

the process: accordingly the result area may be not sufficient in case that the designer do 
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not select the effective shape than others. This is true if the shape of the sections has an 

impact on the needed to be designed section area of the truss members. Ashby (2002) 

showed that how the shape modified the behaviour of material and the shaped sections 

increase the efficiency of the material. That is, according to the researcher knowledge, 

there is no similar practical study has been carried out to compare the effect of the 

changed section shape of the designed area of the truss members under same external 

loads and constraints.  

When the designer use area or range of areas as discrete variables, the optimum 

cross sectional areas of the truss bars will lead to non-available sizes and probably not 

be found on the market. The trail to substitute those values by the nearest available 

commercial sizes make the design infeasible or uneconomical owing to the use of 

unnecessary weight, which is not practically recommended (Croce & Ferreira, 2004; 

Dominguez, Stiharu, & Sedaghati, 2006). This research is going to address this issue by 

utilizing the effective cross section from practical library commercially available sizes 

for a fixed configuration and topology of the roof truss.  

1.2 Problem Statements           

A common structural design problem is the weight minimization of the trusses 

which is formulated by choosing a set of design variables that identify the structural and 

architectural configuration of the system. The structures are often governed by stress 

and displacement limitations, and the design variables may be continuous or discrete. In 

practice, it is often suitable to select design variables (just like cross-sectional area) 

from commercially offered sizes. Despite of the fact that the application of a continuous 

optimization process is often more straightforward, but definitely will lead to non-

available sizes and then every attempt to alternate those values by the nearest offered 
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