

EMBEDDED SYSTEM FOR FACE IDENTIFICATION BASED ON IRIS DETECTION

By

AHMAD NASIR BIN CHE ROSLI (0430210008)

A thesis submitted In fulfillment of the requirements for the degree of Master of Science (Computer Engineering)

15 TE

School of Computer and Communication Engineering UNIVERSITI MALAYSIA PERLIS MALAYSIA

2008

UNIVERSITI MALAYSIA PERLIS

	DECL	ARATION OF THESIS
Author's full name	. AHMAD NA	SIR BIN CHE ROSLI
Date of birth		1974
Title	EMBEDDEI	D SYSTEM FOR FACE IDENTIFICATION BASED ON IRIS
	DETECTIO	N
Academic Session		
	the thesis becomes the p AP. This thesis is classifie	property of Universiti Malaysia Perlis (UniMAP) and to be placed ed as :
	TAL (Contains cor	fidential information under the Official Secret Act 1972)*
RESTICTED	(Contains rearch was	stricted information as specified by the organization where done)*
	C	
	0	my thesis is to be made immediately available as hard e open access (full text)
I, the author, give pe	copy or on-lin ermission to the UniMAP	
I, the author, give pe	copy or on-lin ermission to the UniMAP	e open access (full text) to reproduce this thesis in whole or in part for the purpose of
I, the author, give per research or academic	copy or on-lin ermission to the UniMAP	e open access (full text) to reproduce this thesis in whole or in part for the purpose of during a period of years, if so requested above).
I, the author, give per research or academic SIGN 7408	copy or on-lin ermission to the UniMAP c exchange only (except of NATURE 18-09-5047	e open access (full text) to reproduce this thesis in whole or in part for the purpose of during a period of years, if so requested above). Certified by: <u>SIGNATURE OF SUPERVISOR</u> ASSOCIATE PROFESSOR DR. R. BADLISHAH BIN AHM
I, the author, give per research or academic SIGN 7408 (NEW IC NO.	copy or on-lin ermission to the UniMAP c exchange only (except o	e open access (full text) to reproduce this thesis in whole or in part for the purpose of during a period of years, if so requested above). Certified by:

NOTES: * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentially or restriction.

GRADUATE SCHOOL

UNIVERSITI MALAYSIA PERLIS

PERMISSION TO USE

Ryrigh

In presenting this thesis in fulfilment of a post graduate degree from the Universiti Malaysia Perlis, I agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by my supervisor(s) or, in their absence, by the Dean of the Graduate School. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to Universiti Malaysia Perlis for any scholarly use which may be made of any material from my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole or in part should be addressed to: Thistenic

Dean of Graduate School Universiti Malaysia Perlis (UniMAP) Jalan Meranti Paya Off Jalan Bukit Lagi 01000 Kangar Perlis

APPROVAL AND DECLARATION SHEET

This thesis titled Embedded System for Face Identification based Iris Detection was prepared and submitted by Ahmad Nasir Bin Che Rosli (Matrix Number: 043020008) and has been found satisfactory in terms of scope, quality and presentation as partial fulfillment of the requirement for the award of degree of Master of Science (Computer Engineering) in Universiti Malaysia Perlis (UniMAP). The members of the Supervisory committee are as follows:

R. BADLISHAH BIN AHMAD, Ph. D.

Associate Professor School of Computer and Communication Engineering Universiti Malaysia Perlis (Head Supervisor)

ALI YEON BIN MD. SHAKAFF, Ph.D.

Professor School of Computer and Communication Engineering Universiti Malaysia Perlis (Co-Supervisor I)

MOHD RIZON MOHAMED JUHARI, Ph. D.

Associate Professor School of Mechatronic Engineering Universiti Malaysia Perlis (Co-Supervisor II)

Check and Approved by

(ASSOCIATE PROFESSOR DR. R. BADLISHAH BIN AHMAD)

Dean / Head Supervisor School of Computer and Communication Engineering Universiti Malaysia Perlis

(Date :....)

School of Computer and Communication Engineering Universiti Malaysia Perlis

2008

ACKNOWLEDGEMENTS

First and foremost, I would like to convey my deepest thanks to the Almighty Allah (SWT), the Omnipotent, the Merciful and the Compassionate, for giving me the strength, patience, courage and determination in compiling this research. Alhamdulillah. I beg Him to continue His blessings on me forever. The journey towards the completion of this thesis was full of unexpected challenges and it is almost impossible to complete this thesis single-handedly without the help and support of others. I would like to give my heartfelt thanks to everyone who has provided me with such support.

I would like to extend my infinite gratitude to my supervisors Associate Professor Dr. R. Badlishah Ahmad, Professor Dr. Ali Yeon Md Shakaff and Associate Professor Dr. Mohd Rizon Mohamed Juhari for their extraordinary support and understanding in guiding me through this thesis successfully.

I would like to thank my dear wife, Dayang Khadijah Hamdzah, beloved sons, Ahmad Hariez Hafiy and Ahmad Mifzal Hadif, my parent, Che Rosli Mahamud and Jaliha Md, Arshad, my in-law parent, Hamdzah Hasanudin and Hanisah Tan and my family for their love, prayer, patience, encouragement and full support during my study. Thank you.

Many colleagues have worked closely with me on this research work. First I would like to thank Mr. Wan Muhamad Azmi, Mr. Shuhaizar, Miss Haniza, Mr. Faisal, Miss Farhan, Mr. Mostafijur, Mr. Nasim, Mrs. Norazila, Mr. Hilal and the rest of Embedded Cluster members for their continuous support and motivation; working with all of you is a good experience that could never be forgotten. I do appreciate the constant help from lab technicians who always understand and their great help during the process of completing this research work. I also want to thank Mr. Mohd Hatta and Teaching Factory member for helping me to fabricate the prototype.

A special thank to all staff members of the School of Computer and Communication Engineering, Universiti Malaysia Perlis such as Mr. Zahereel Ishwar, Mr. Zulkifli, Mr. Amir Razif, Mr. Abdul Hallis, Mrs. Rafikha, Mrs Hazila, Mrs. Sahadah and Mrs. Sharifah for their technical advice and contributions either directly or indirectly. I'm also very grateful to Universiti Malaysia Perlis for their financial support throughout my postgraduate study. These special thanks also go to Mrs. Sharifah Husna and Miss Norzaililah for their support in managing the postgraduate and scholarship program.

Last but not least, I would like to express my greatest appreciation to all of the people who have helped me in doing this research project, may ALLAH bless you all.

Ai original was a second of the second of th

TABLES OF CONTENTS

	Page
DECLARATION OF THESIS	i
PERMISSION TO USE	ii A
APPROVAL AND DECLARATION SHEET	iii
ACKNOWLEDGEMENT	iv
TABLE OF CONTENTS	vi
LIST OF TABLES	X
LIST OF FIGURES	xi
LIST OF ABBREVIATIONS	xiv
ABSTRAK (BM)	xvi
ABSTRACT (ENGLISH)	xvii

CHAPTER 1 INTRODUCTION

1.1	Overview	1
1.2	Problem Statement	2
1.3	Motivation	4
1.4	Research Objective	6
1.5	Research Scope	6
1.6	Thesis Outline	7

LITERATURE REVIEW

	CHAPTER 2	LITERATURE REVIEW	
٠	XOY		
	2.1	Introduction	9
	2.2	Image Definition	10
	2.3	Image Processing Method	11
	2.3.1	Motion Analysis Technique	13
\bigcirc	2.3.2	Morphological Filtering	15
	2.3.3	Histogram Equalization	16
	2.3.4	Image Scaling	18
	2.4	Biometric Identification	19
	2.5	Comparison of Biometric Technologies	23
	2.6	Face Recognition	26

2.7 Summary

CHAPTER 3 GNU/LINUX AND EMBEDDED SYSTEM

3.1	Introduction	31
3.2	Linux Operating System	32
3.3	Concept of Linux Device Driver	35
3.4	Hardware Platform for Embedded Systems	38
3.5	Image Acquisition and Processing in Embedded Device	42
3.6	Single Board Computer (SBC)	45
3.7	Development Languages	49
3.8	Operating System	51
3.9	Summary	53

30

CHAPTER 4 BIOI²D HARDWARE PLATFORMS

4	.1	Introduction	56
4	.2	Overview of the BIOI ² D System	57
4	.3	BIOI ² D Hardware Design	58
4	.4	Hardware Components	60
	4.4.1	TS-5500 Single Board Computer	61
	4.4.2	Logitech Quick Cam Pro 4000	62
	4.4.3	Lumex LCD Panel	62
	4.4.4	Matrix Keypad	63
	4.4.5	Compact Flash Memory Card	63
• • • •	4.4.6	PCMCIA Wireless Network Card	64
	4.4.7	PC Server	64
4	.5	Hardware Setup	65
	4.5.1	TS-5500 Configuration	65
\bigcirc	4.5.2	Integration and Configuration of USB Webcam	67
	4.5.2.1	Logitech QuickCam STX/USB Webcam Setup on Desktop PC Red Hat 8.1	70
	4.5.2.2	Logitech Quickcam Pro 4000 Setup on Desktop PC RedHat 7.3	71
	4.5.2.3	Logitech Quickcam Pro 4000 Setup on RedHat 7.3 kernel 2.4.23-2.5-ts	74

vii

	4.5.2.4	Logitech Quickcam Pro 4000 Setup on TS 5500 SBC	75
	4.5.3	Integration of LCD Panel	76
	4.5.4	Integration of Matrix Keypad	77
	4.6	Prototypes Model	78
	4.7	Summary	82
	CHAPTER 5	BIOI ² D SOFTWARE DEVELOPMENT	Stre
	5.1	Introduction	84
	5.2	BIOI ² D System Overview	85
	5.3	BIOI ² D Software Design	87
	5.3.1	User Interface Module	88
	5.3.2	Image Acquisition Module	95
	5.3.3	Image Preprocessing Module	98
	5.3.3.1	Colour Space Conversion	99
	5.3.3.2	Motion Analysis Technique	104
	5.3.3.3	Histogram Equalization	111
	5.3.3.4	Image Scaling	114
	5.3.4	Network Module	120
	5.3.5	Biometric Identification Module	125
	5.3.5.1	Face Database Modeling	126
	5.3.5.2	Face Detection Stage	127
	5.4	Summary	130
•,	CHAPTER 6	RESULT AND DISCUSSION	
. 5	Y		
	6.1	Introduction	132
	6.2	Prototypes Platform as Evaluation Environment	133
\bigcirc	6.3	BIOI ² D Hardware Performance	135
C	6.3.1	Overall BIOI ² D Operation	136
	6.3.2	Image Preprocessing Algorithm	139
	6.3.3	Biometric Identification Algorithm	147
	6.4	Image Preprocessing Algorithm	148
	6.4.1	Colour Space Conversion	148
	6.4.2	Thresholding	155

viii

	6.4.3	Noise Removal	158
	6.4.4	Morphological Filtering	159
	6.4.5	Histogram Equalization	160
	6.4.6	Image Scaling	163
	6.5	Biometric Identification Module	165
	6.6	Summary	169
			3
	CHAPTER 7	CONCLUSION	
	7.1	Introduction	171
	7.2	Future Work	173
	7.3	Contribution	173
		Olive	
	REFERENCES	4	174
	PUBLICATIONS		183
	EXHIBITIONS		185
		xO	
	APPENDICES		
	Appendix A	Image Format Specification	187
	Appendix B	Image Colour Space	192
	Appendix C	YUV to RGB Colour Space Conversion	199
	C Y		
	Appendix D	Sample 02 RGB Image Colour Components	202
.5	7		
	Appendix E	Biometric Identification result	206
(C)			
\smile			

LIST OF TABLES

	Table		
	2.1	Comparison of various biometric technologies	25
	2.2	Commercial face recognition systems.	29
	3.1	Directories beneath the / (root) directory	34
	3.2	Information appliances	41
	3.3	Embedded system with different hardware platform	48
	4.1	USB webcam model and Linux V4L device driver	68
	4.2	Results for testing and configuration of different webcams with different Linux OS and kernel versions	69
	5.1	Video picture palette fields and description	97
	6.1	Comparison desktop PC and SBC Specifications	136
	6.2	Comparison of overall BIOI2D operations execution time	137
	6.3	Processes in image preprocessing algorithm	139
	6.4	The processing time, operations per second and percentage of differences between SBC and desktop	145
	6.5	Comparison of image reading with and without the use of shared memory	147
	6.6	Comparison of biometric identification process	147
	6.7	The RGB and greyscale value for the selected pixels	154
	6.8	Identification Results for Different Image Samples	167
orns	tent		

LIST OF FIGURES

	Figure		
	2.1	Greyscale charts illustrating the differences between the mixture of RGB, CMY, CMYK and black only	
	2.2	Method for the proposed image processing	12
	2.3	Block diagrams of enrolment, verification and identification tasks are shown using the four main modules of a biometric system, i.e. sensor, feature extraction, matcher, and system database.	22
	3.1	A split view of the kernel	33
	4.1	Overall system architecture	57
	4.2	BIOI ² D components for the proposed hardware design	58
	4.3	The prototype design of BIOI ² D Face Reader physical model	59
	4.4	TS-5500 Single Board Computer (SBC)	61
	4.5	Logitech QuickCam Pro 4000 webcam	62
	4.6	Lumex LCD panel	62
	4.7	4x4 Matrix keypad	63
	4.8	Compact flash memory card	63
	4.9	Wireless PC Card	64
	4.10	The HP DX5150 Microtower Business PC	65
	4.11	PWC core modules	71
	4.12	PWCX decompressor modules	72
	4.13	Option supplied to the PWC module /etc/modules.conf	72
	4.14	Steps for compiling a new kernel	73
•	4.15	Kernels build procedure using the TS-Linux patch	75
. 5	4.16	The installation procedure for LCD panel	77
	4.17	Installation Procedures for Matrix Keypad	78
	4.18	Face Reader components	79
	4.19	Face Reader casing design	80
	4.20	The principal of FDM	81
	4.21	Physical model for Face Reader prototype	82
	5.1	BIOI2D State machine diagram	86
	5.2	<pre>open_device_keypad() function</pre>	88
	5.3	Flowchart for BIOI2D system	89
	5.4	Flowchart for background image capturing process	90

	5.5	Flowchart for background image reading process	91
	5.6	Flowchart for stand-alone mode process	92
	5.7	Flowchart for network mode process	94
	5.8	Capturing process block diagram	95
	5.9	Flowchart for image preprocessing process	99
	5.10	Algorithm for conversion from RGB to Greyscale	103
	5.11	Algorithm for frame differencing and threshold in motion analysis algorithm	105
	5.12	Steps involve in noise removal	108
	5.13	Algorithm for noise removal in motion analysis technique	109
	5.14	Algorithm for morphological filtering in motion analysis technique	110
	5.15	Algorithm for histogram equalization	112
	5.16	Algorithm for Box interpolation filter	116
	5.17	Image down scaling from 640 by 480 to 480 by 320 pixels	118
	5.18	Algorithm for image down scaling	119
	5.19	Flowchart for client-server sockets	121
	5.20	Flowchart for BIOI2D client socket	123
	5.21	Flowchart for BIOI2D server socket	124
	5.22	The extended face template	126
	5.23	Coordinate system of the extended face template, T_E	127
	5.24	Face recognition algorithm using iris detection method	128
	5.25	Positions of irises of both eyes detected by the iris detection algorithm	128
•	6.1	The <i>Face Reader</i> prototype comprising of TS-5500 SBC, USB Webcam, LCD Panel and Matrix Keypad.	134
• 5	6.2	The experimental setup diagram for BIOI ² D	135
(h)	6.3	The image samples used in image preprocessing algorithm evaluation	140
\bigcirc	6.4	Graph for processing time for image preprocessing algorithm using image sample 01	142
<u> </u>	6.5	Graph for processing time for image preprocessing algorithm using image sample 02	142
	6.6	Graph for processing time for image preprocessing algorithm using image sample 03	143
	6.7	RGB and Greyscale images from color space conversion	150
	6.8	Red component image for RGB image	150

	6.9	The histogram of the red components for RGB image	151
	6.10	Green component image for RGB image	151
	6.11	The histogram of the green components for RGB image	152
	6.12	Blue component image for RGB image	152
	6.13	The histogram of the blue components for RGB image	153
	6.14	The histogram of the greyscale image	154
	6.15 (a)	The background image	155
	6.15 (b)	Histogram of the background image	155
	6.16 (a)	The input face image	156
	6.16 (b)	Histogram of the input face image	156
	6.17 (a)	The binary image after thresholding	157
	6.17 (b)	Graph of black pixel per line in binary image	157
	6.18 (a)	The face image thresholding	157
	6.18 (b)	Histogram of the face image thresholding	157
	6.19 (a)	The binary image after noise removal	159
	6.19 (b)	Graph of black pixel per line in binary image	159
	6.20 (a)	The binary image after morphological filtering	160
	6.20 (b)	Graph of black pixel per line in binary image	160
	6.21 (a)	The face image after original greyscale value restoration	161
	6.21 (b)	Histogram of the face image	161
	6.22 (a)	The face image after histogram equalization	162
	6.22 (b)	Histogram of the face image	162
	6.23 (a)	The face image after down scaling process	164
	6.23 (b)	Histogram of the face image	164
	6.24	Face template and database for biometric identification module	165
This	6.25	Results for face recognition algorithm, graph show matching percentage vs. image samples, if percentage is 98% and above, identification is successful.	166
\bigcirc	6.26	An example of the face images which the biometric identification algorithm gave successful results.	167
	6.27	An example of face images for which the biometric identification algorithm failed to detect the positions of the irises	168

LIST OF ABBREVIATIONS

	API	Application Programming Interface
	ATM	Asynchronous Transfer Mode
	BIOI ² D	Biometric Identification System Based On Iris Detection
	CCD	Charge Coupled Device
	CF	Compact Flash
	CMOS	Complementary Metal Oxide Semiconductor
	CPU	Central Processing Unit
	DHCP	Dynamic Host Configuration Protocol
	DSP	Digital Signal Processor
	ECG	Electrocardiogram
	EOS	Embedded Operating System
	FDM	Fused Deposition Modeling
	FPGA	Field-Programmable Gate Array
	FTP	File Transfer Protocol
	GNU	A Computer Operating System Composed Entirely Of Free Software
	GPL	General Public Licence
	GPRS	General Packet Radio Service
	GSM	Global System For Mobile Communication
	GUI	Graphical User Interface
	HCI	Human Computer Interaction
	IC	Integrated Circuit
	IPC	Inter-Process Communication
	ioctl	Input/Output Control
	JVM	Java Virtual Machine
	LAN	Local-Area Network
	LCD	Liquid Crystal Display
\bigcirc	LSI	Large Scale Integrated
	Netpbm	An Open Source Package Of Graphics Programs And A Programming
		Library, Used Mainly In The Unix World
	OOP	Object Oriented Program
	OPS	Operation Perseconds
	OS	Operating System

PAM Portable Arbitrary Map

PBM Portable Bit Map

PCI Peripheral Component Interconnect

nalcopytics **PCMCIA** Personal Computer Memory Card International Association

PDA Personal Digital Assistant

PGM Portable Gray Map

PIN Personal Identification Number

PNM Portable Any Map

PPM Portable Pixel Map

RAM Random Access Memory

RISC **Reduced Instructions Set Computer**

ROM Read-Only Memory

SBC Single Board Computer

SCP Secure Copy

SCSI Small Computer System Interface

SHM Shared Memory

SOC System On A Chip

SSD Solid State Disk

SSH Secure Shell

TCP/IP Transmission Control Protocol/Internet Protocol

UDP/IP • User Datagram Protocol/Internet Protocol

UNIX A Computer Operating System

Universal Serial Bus USB

VGA Video Graphics Array

VHDL VHSIC Hardware Description Language

VHSIC Very-High-Speed Integrated Circuits

WAN Wide Area Network

WAP Wireless Application Protocol

xv

SISTEM TERBENAM UNTUK PENGECAMAN WAJAH BERASASKAN PENGESANAN ANAK MATA

ABSTRAK

Kajian ini memperincikan rekabentuk dan perlaksanaan Sistem Terbenam untuk Pengecaman Biometrik berasaskan Pengesanan Anak Mata (BIOI²D). Sistem ini menggunakan Komputer Sistem Terbenam (SBC) dengan mengeksploitasikan Sistem Pengoperasian GNU/Linux yang membenarkan penggunaan sumber-sumber terbuka seperti perpustakaan, pemacu kernel dan pengkompil GNU C dalam pembangunan dan perlaksanaannya. Sistem BIOI²D ini direkabentuk untuk beroperasi secara sistem masa nyata dengan melaksanakan proses-proses seperti berikut: pengambilan imej muka, pemprosesan imej muka dan suai padan dengan pengkalan data dengan menggunakan nombor pengenalan pengguna untuk mempercepatkan tugas-tugas pemprosesan. Komponen utama untuk Pembaca Muka adalah Komputer Sistem Terbenam (SBC) x86 model TS-5500. Komponen lain yang diintegrasikan kepada Komputer Sistem Terbenam ini adalah panel LCD, Kamera Web sambungan USB, Kad Kilat Kompak, Kad Rangkaian Tanpa Wayar PCMCIA dan papan kekunci. Perisisan sistem BIOI²D ini dirangka dalam lima (5) modul iaitu Pengantaramuka Pengguna, Perolehan Imej, Pra-pemprosesan Imej, Rangkaian dan Pengecaman Biometrik. Pembangunan modul Pengantaramuka Pengguna melibatkan integrasi panel LCD dan papan kekunci matrik dengan system Pembaca Muka. Modul Perolehan Imej dibangunkan dengan menggunakan perpustakaan video4Linux. Sistem BIOI²D ini beroperasi secara masa nyata dimana memerlukan pengenalan identiti sesebuah muka. Perisian pengecaman muka ini akan mengenalpasti muka seseorang berdasarkan imej yang diperolehi. Proses Pra-pemprosesan Imej diaplikasikan keatas imej yang diperolehi untuk membuang latar belakang imej dan mempertingkatkan kontras setempat. Teknik-teknik pra-pemprosesan imej yang dilaksanakan adalah pertukaran format warna, teknik analisa gerakan, penyamaan histogram dan pengubahan saiz imej. Modul Pengecaman Imej adalah terdiri daripada sistem pengenalan muka berasaskan pengukuran anak mata dimana sistem ini berasaskan suaipadan secara bertemplat. Imej muka hasil daripada modul Pra-pemprosesan Imej digunakan sebagai imej masukan untuk modul Pengecaman Imej. Proses pengenalan imej dilaksanakan secara suai padan langsung berdasarkan nombor pengenalan pengguna untuk mengurangkan masa pemprosesan seterusnya mempertingkatkan kecekapan sistem ini. Penilaian yang dijalankan keatas sistem ini memfokuskan pengukuran prestasi perkakasan, proses pemprosesan imej dan proses pengecaman biometrik. Hasil terhadap kajian yang dijalankan keatas 100 imej muka daripada 10 orang menunjukkan kadar kejayaan bagi sistem pengecaman biometrik adalah 73% dan peratusan padanan yang boleh disandarkan dan digunakan sebagai penanda aras untuk melaksanakan sistem ini adalah 98%. Penyelidikan ini menunjukkan bahawa teknologi pemprosesan terbenam, khususnya pemproses x86 TS-5500 komputer sistem terbenam (SBC), telah dibangunkan dengan sempurna dan menjadikannya bermanfaat untuk melaksanakan sistem pandangan berkomputer yang berkeupayaan untuk sistem terbenam iaitu pengecaman biometrik berasaskan pengesanan anak mata.

EMBEDDED SYSTEM FOR FACE IDENTIFICATION BASED ON IRIS DETECTION

ABSTRACT

This research describes the design and implementation of an Embedded System for Biometric Identification based on Iris Detection (BIOI²D). It is based on single board computer (SBC) and utilizing GNU/Linux operating system (OS) which allows the use of open source resources such as libraries, kernels drivers and GNU C compiler in developing and implementing this system. The $BIOI^2D$ is designed to operate in real-time mode to execute these following tasks: face (image) capture, preprocessing and matching with database using predetermine user identification number to reduce the processing tasks. The main component for Face Reader is a x86 Single Board Computer (SBC) TS-5500. Other components connected to the SBC consist of LCD Panel, USB Web Camera, Compact Flash Card, PCMCIA Wireless Network Card and keypad. BIOI²D software design is structured in five modules namely as User Interface, Image Acquisition, Image Preprocessing, Network and Biometric Identification. The development of user interface module involves the integration of LCD panel and matrix keypad with the Face Reader system. Image Acquisition Module is developed by utilizing the video4Linux API. $BIOI^2D$ is designed to operate in real-time mode, which requires the face identification and recognition software to identify the person face from the captured image. The image preprocessing processes are used to perform initial processing to the captured image by removing background and increased the local contrast. The image preprocessing technique performs are the colour space conversion, motion analysis technique, histogram equalization and image scaling. Biometric identification module is a face recognition system based on iris detection. The recognition system is based on template matching. Output image from the image preprocessing module is used as an input face image for biometric identification module. The recognition process is done one-to-one matching (direct matching) by using user ID to reduced processing time, thus increase the efficiency of the system. The system evaluations are focusing on hardware performance, image preprocessing process and face identification process. Experiment with set of test images consist of 100 images of 10 persons shows the successful rate for the face identification system is 73% and percentage of matching that is reliable and should be used as a threshold for system implementation is 98%. This thesis demonstrate that embedded processing technology, in particular the x86 processor TS-5500 SBC, has been developed well enough to make it useable for implementing a computer vision system adequate for embedded system for biometric identification based on iris detection.

CHAPTER 1

INTRODUCTION

1.1 Overview

Biometrics refers to automatic identification of a person based on his or her physiological or behavioral characteristics which provides a reliable and secure user authentication for the increased security requirements of our information society than traditional identification methods such as passwords and PINs (Jain et al., 2000). Organizations are looking to automate identity authentication systems to improve customer satisfaction and operating efficiency as well as to save critical resources due to the fact show that identity fraud in welfare disbursements, credit card transactions, cellular phone calls, and ATM withdrawals totals over \$6 billion each year (Jain et al., 1998). Furthermore, as people become more connected electronically, the ability to achieve a highly accurate automatic personal identification system is substantially more critical.

Enormous change has occurred in the world of embedded systems driven by the advancement on the integrated circuit technology and the availability of open source. This has opened new challenges and development of advanced embedded system. This scenario is proven by the appearance of sophisticated new products such as PDAs and cell phones and by the continual increase in the amount of resources that can be packed into a small form factor which require significant high end skills and knowledge. More people are gearing up to acquire more skills and knowledge to keep in-front of the technologies to build advanced embedded system using available Single Board Computer with 32 bit architectures (Badlishah et al., 2006a).

The new generation of embedded systems can capitalize on embedding a fullfeatured operating system especially GNU/Linux OS bringing a wide selection of capabilities from which to choose inclusive of all the standard IO and built in wireless Internet connectivity by providing TCP/IP stack. Only a few years ago, embedded operating systems typically were found only at the high end of the embedded system spectrum (Richard, 2004). One of the strength of GNU/Linux OS is that it supports many processor architectures thus enable engineer to choose from varieties of processors available in the market (Badlishah et al., 2006b). GNU/Linux OS is therefore seen as the obvious candidate for various embedded applications. More embedded system companies development such as Curtiss-Wright Embedded Computing (Curtiss, n.d.), Technologic Systems Inc. (Technologic, n.d.), Emac Inc. (Emac, n.d.), etc. comes with SDK which consist of open source GNU C compiler.

1.2 Problem Statement

In general, two (2) traditional techniques widely used for user authentication solution are knowledge-based and token-based automatic personal identification (Miller, 1994). Knowledge-based approach use something that user's know to make a personal identification, such as a password or a personal identification number (PIN). This approach is commonly used in electronic access control system. Token-based approaches is prevalent in banking, corporate network, and government applications; use something that user's have to make a personal identification, such as a passport, driver's license, ID card, credit card, or keys.

These traditional approaches suffer from several disadvantages. As an example tokens, may be lost, stolen, forgotten, or misplaced, and PIN may be forgotten by a valid user or guessed by an impostor. Because knowledge-based and token-based approaches are unable to differentiate between an authorized person and an impostor who fraudulently acquires the token or knowledge of the authorized person (Miller, 1994), they are unsatisfactory means of achieving the security requirements of our electronically interconnected information society.

Biometrics, which refer to the automatic recognition of people based on their distinctive physiological (e.g., face, fingerprint, iris, retina, hand geometry, voice) and behavioral (e.g., signature, gait) characteristics, could form a component of effective user identification solutions, because they intrinsically and reliably represent the individual's bodily identity (Jain, 2002). Biometric characteristics cannot be lost or forgotten; they are quite difficult to copy, share, and distribute; and they require the person being authenticated to be physically present at the time and point of authentication (Aaraj et al., 2006).

OTHS

The face recognition algorithm based on iris detection method software is developed by Assoc. Prof. Dr. Mohd Rizon Muhamed Juhari. The proposed system is to identify the unknown person in face image for which the position, scale and image-plane rotation of the face are unknown and this identification system is based on template matching (Rizon et al., 2003). The software is coded using GNU C compiler and run under Linux desktop system.

Aside from technologies to measure new biometrics, research trend are now looking at introducing innovations that fall beyond the recognition system itself. In another words, once the data have been collected, research are put on how will it be archived, compared, transmitted, used in reports and to control a process. Other goal is to make implementation of biometrics a less expensive option through downsizing them and making them portable.

The development and implementation of biometric identification system using low end embedded platform such as FPGAs are severely constrained in their limited processing capabilities, limited memory, limited power source, and algorithms for biometric identification that provide sufficient accuracy tend to be computationally expensive, leading to unacceptable authentication times. This means that achieving acceptable performance often comes at the cost of degradation in the quality of results.

1.3 Motivation

The focus on this research is to develop, implement and analyse an embedded system for biometric identification based on iris detection using single board computer (SBC) and GNU/Linux to replace conventional smart card reader system for security. This system which includes a *Face Reader* to capture and analyze a person faces for authentication purposes. The overall development of face recognition system includes hardware and software implementation. An embedded single board computer (SBC)

with GNU/Linux Operating System which utilizes open source technology kernel, libraries and GNU C compiler is an alternative low cost solution system.

Efficiency of size, weight, cost, interchangeability, and consistency are the major factors (Hoopes et al., 2003) which leads to the selection of SBC as the hardware platform for the system. The SBC standard, a commonly-used robotic development platform (Krishnan, 1999)(Sukhatme, 1999), specifies a main board of approximately 4 by 4 inches that houses a processor, memory and the basic chipset needed to function as a standalone embedded computer capable of functioning with only a separate power supply and whatever outside input or output devices the application calls for. The SBC allows the use of an 802.11b and wired Ethernet connection transmission to provide high-speed two way communications link between the system and PC Database Server.

The SBC itself is portable and can be used for various purposes such as network based identification system on human face, robot vision platform and embedded web server. Utilizing Linux based SBC allow us to manipulate the availability of open source resources such as libraries, kernels and drivers in developing and implementing this system. The SBC used in this development comes with TS-Linux OS which also include TCP/IP network protocol with wireless as well as wired network interface. This allows network centric application to be easily developed and implemented.

1.4 Research Objective

The objectives of this research are:

- i. To develop and evaluate a face reader system
- ii. To configure and integrate external devices to the main board,
- iii. To develop image acquisition, image pre-processing, communication and user interface software based on SBC and GNU/Linux system.
- iv. To analyse the performance in comparison to a desktop pc to determine the feasibility of the system.

1.5 Research Scope

This research focus on the development, implementation and analysis of an embedded system for biometric identification based on iris detection using single board computer (SBC) and GNU/Linux OS. The overall system development includes hardware integration and software implementation. It has been shown that embedded single board computers (SBC) with GNU/Linux OS are the cost effective way to develop high-end embedded system. The development includes finding the compatible external devices I/O which can be integrated with the SBC such as USB webcam, LCD panel and matrix keypad. Integrating and implementing the system to work accordingly involves the installation of suitable device driver module to the TS-Linux OS and also involve a compilation of a kernel by considering the version of Linux kernel and libraries.

