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Pengubahsuaian Normalisasi Iluminasi Retinex dalam Pendekatan Mengesan 

Kesakitan pada Bayi 

 

ABSTRAK 

 

 

Kesakitan bayi dipantau di dalam Neonatal Jagaan Unit Rapi (NICU). Kesakitan pada 

bayi dapat dikesan dengan mengkaji perubahan mimik muka mereka. Walaupun 

keputusan yang diperolehi amat memberangsangkan, ianya  tidak cukup dalam aspek 

gangguan dan perubahan iluminasi. Penyaring Penyesuai Median (AMF) untuk menapis 

gangguan telah dicadangkan. Purata dan varian nilai median digunakan untuk 

menghasilkan pemberat yang bersesuaian dengan imej menggunakan  3x3,5x5 or 7x7 

telah digunakan. Keputusan kuantitif seperti Puncak Isyarat kepada nisbah gangguan 

(PSNR), Purata Kuasa Dua Ralat (MSE), Faktor Peninggian Imej (IEF) dan Indeks 

Persamaan Purata Struktur (MSSIM). Keputusan purata menunjukkan peningkatan 

dengan 40.63 db untuk PSNR, 6.01 untuk MSE, 258.09 untuk IEF dan 0.97 untuk 

MSSIM. Dalam kajian ini juga iluminasi normalisasi baru yang dikenali sebagai 

Pengubahsuaian Retinex Teknik (MRT) untuk mengesan muka dalam perbezaan 

iluminasi dengan menggabungkan normalisasi histogram dan gabungan kombinasi ciri 

telah dicadangkan. Kaedah ini telah dibandingkan dengan kaedah seperti (SSR) Skala 

Tunggal Retinex, (HOMO) Kaedah Homomorphic, (SSQ) Skala Tunggal Nisbah Imej, 

Gross dan Brajovic Teknik (GBT), (DCT) Kaedah DCT, (GRF) Teknik perubahan 

muka, (TT) Kaedah Tan dan Triggs, and Teknik Besar dan Kecil (LSSF) untuk menilai 

kecekapannya. Kaedah ini tidak memerlukan maklumat luaran tentang bentuk muka dan 

iluminasi malahan boleh digunakan pada stiap imej secara berasingan. Kajian dijalankan 

menggunakan imej COPE data. Keputusan yang ditunjukkan amat memberangsangkan. 

Pengambilan pencirian tunggal seperti Analisis Komponen Prinsipal (PCA), Corak 

Tempatan Dedua (LBP) dan Transformasi Sudut Berasingan (DCT) menghasilkan 

keputusan yang baik. Walaubagaimanapun gabungan ketiga-tiga pengambilan pencirian 

ini menghasilkan ketepatan yang amat memberangsangkan. Kaedah MRT bersama 

gabungan pengambilan pencirian mendapat keputusan >90% pada sepuluh klasifikasi 

seperti Jiran Terdekat K (k-NN), Fuzi Jiran Terdekat K (Fuzzy k-NN), Pembezaan 

Analisis Lurus (LDA), Masukan Terus Rangkaian Neural (FFNN), Kemugkinan 

Rangkaian Neural (PNN), Regresi Umum Rangkaian Neural (GRNN), Mesin Pembantu 

Vektor Lurus (SVMLIN), Mesin Pembantu Vektor Fungsi Asas Radial (SVMRBF), 

Mesin Pembantu Vektor Pelbagai Lapisan (SVMMLP) dan Mesin Pembantu Vektor 

polinomial (SVMPOL) dalam beberapa pengukuran prestasi seperti sensitivity, 

spesifikasi, ketepatan, luas bawah lengkung (AUC), Cohen's kappa (k), kepersisan, 

Pegukur F dan masa proses. 
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A Modified Retinex Illumination Normalization Approach for Infant Pain 

Recognition System 

 

ABSTRACT 

 

 

Pains in newborn babies are monitored in a Neonatal Intensive Care Unit (NICU) for 

medical treatment. Pain in newborns can be detected by studying their facial appearance. 

Even though the outcome is acceptable, it is not adequately vigorous to be used in 

unpredictable, non-ideal situations such as noise and varying illumination environment. 

First, to improve the noise cancellation robustness an adaptive median filter (AMF) is 

proposed. Mean and variance of median values are selected to generate a weight for 

each window part of the images such as 3x3, 5x5 or 7x7. Various linear and nonlinear 

filters are adopted to eliminate the noise in the images. Quantitative comparisons are 

performed between these filters with our AMF in terms of Peak Signal-to-Noise Ratio 

(PSNR), Mean Square Error (MSE), Image Enhancement Factor (IEF) and Mean 

Structural SIMilarity (MSSIM) Index. The average results show improvement in terms 

of 40.63 db for PSNR, 6.01 for MSE, 258.09 for IEF and 0.97 for MSSIM respectively. 

In this work a novel method of illumination invariant normalization known as Modified 

Retinex Normalization (MRT) for preprocessing of infant face recognition is proposed. 

This is based on a modified retinex model that combines with histogram normalization 

for filtering the illumination invariant. The proposed method is compared to other 

methods like Single scale Retinex (SSR), Homomorphic method (HOMO), Single Scale 

Self Quotient Image (SSQ), Gross and Brajovic Technique (GBT), DCT-Based 

Normalization (DCT), Gradientfaces-based normalization technique (GRF), Tan and 

Triggs normalization technique (TT), and Large-and small-scale features normalization 

technique (LSSF) for evaluation with Infant Classification of Pain Expressions (COPE) 

database. Several experiments were performed on COPE databases. Single PCA, LBP 

and DCT feature extraction information yielded a good recognition result. However, by 

summing these three, it gives more robustness to noise and illumination classification 

rate because the sum rule was the most resilient to estimate errors and gives higher than 

90% accuracies of pain and no pain detection. The new illumination normalization and 

combination of features gives higher results of more than 90% on five different 

classifiers with various algorithms such as k-nearest neighbors (k-NN), Fuzzy k-nearest 

neighbors (FkNN), Linear Discriminat Analysis (LDA), Feed Forward Neural Network 

(FFNN), Probabilistic Neural Network (PNN), General regression Neural Network 

(GRNN), SVM Linear kernel (SVMLIN), SVM RBF kernel (SVMRBF), SVM MLP 

kernel (SVMMLP) and SVM Polynomial kernel (SVMPOL) with different performance 

measurement such as Sensitivity, Specificity, Accuracy, Area under Curve (AUC), 

Cohen's kappa (k), Precession , F-Measure and Time Consumption . 
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CHAPTER 1 

 

 

INTRODUCTION 

 

1.1 Project Background  

 

Newborn babies are monitored in a Neonatal Intensive Care Unit (NICU) for 

medical treatment  include perinatal asphyxia, major birth defects, sepsis, neonatal, 

and Infant respiratory distress syndrome due to immaturity of the lungs. These infants 

are nurtured in an incubator, where their vital bodily function indicators such as blood 

pressure, temperature, heart rate, oxygen concentration and respiration are continuously 

observed. To avoid disturbed sleep caused by bright lights which leads to anxiety, the 

incubator is covered with a blanket to reduce the intensity of light. The drawback of this 

practice is that visual inspection of the infant throughout most of the time is impaired. In 

other words, ache and distress cannot be assessed by observing crucial functions. There 

are growing concerns that early detection of pain and distress may be important for the 

infant’s development which prompts us to widen a model for an automated video 

surveillance system that can detect ache and distress in neonates. 

 

Distress in newborns can be detected by studying their facial appearance (Grunau et 

al., 1987; Stevens et al., 1996; Chen et al., 2005). In particular, the appearance of the 

mouth, eyebrows and eyes are reported to be significant facial features for detecting the 

occurrence of distress and ache. This has resulted in the development of scoring systems 

to evaluate the intensity of distress, based on facial appearance and physiological 
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parameters. The scoring systems provide early signals to care takers when newborns 

experience ache or distress, so proper actions can be taken in an instant. 

 

So far, only one automatic video-surveillance system (Brahnam et al., 2006; 

Brahnam et al., 2007) for pain detection in newborn babies has been reported. In this 

system, enlarged images of an infant are taken in diverse situations: using a painful 

method (heel lance) and during other non-painful situations such as friction, crying, 

resting and air stimulus. After manual rotation and scaling, pixel-based classifiers, such 

as Linear Discriminant Analysis and Support Vector Machines (Brahnam et al., 2006; 

Brahnam et al., 2007; Martinez & Kak, 2004; Abdi, 2007; Perriere & Thioulouse, 2003) 

were applied for sorting the facial expressions. Even though the outcome is acceptable, 

it believe that this is not adequately vigorous to be used in unpredictable, non-ideal 

situations such as under varying noise and illumination environment, where the 

newborn’s face is partly covered by plasters or tubing. 

 

Illumination is one of the basic characteristics of a visible surface and it provides 

information for scene interpretation (Gao et al., 2003; Chen et al., 2000). Recent 

developments in this field have shown that there is room for improvements. Most of the 

traditional face recognition algorithms are satisfactory under controlled conditions. 

However, when dealing with performance degrading issues such as variation in pose, 

noise, illumination, and facial expression, their accuracy greatly diminished (Gao et al., 

2003; Chen et al., 2000). As the performance of a face recognition technique is 

significantly affected by various illumination and noise effects, illumination and noise 

are known to be the key factors that play an important role in human face recognition 

system design. 

 

 

 

 

 

 

 

 

©
 T

his 
ite

m
 is

 p
ro

te
ct

ed b
y o

rig
in

al 
co

pyr
igh

t 



 3 

To address this limitation, this dissertation proposed a distress detection scheme and 

depicts a pilot method with the following properties: first, the identification of distress 

will be based on analyzing the whole face region in an automated way. With this 

information, the behavioral circumstances of the infant either in pain or normal can be 

detected. Images of surrounding factors such as the visibility of plasters and tubes on 

the infant are excluded in this work. However, other challenging circumstances, such as 

the changes in noise and illumination environment, which characteristically lead to 

suboptimal surroundings, need to be considered. 

 

1.2 Problem Statement 

 

Many issues hinder research efforts in the field of infant face recognition. Variation 

exists in every imaging approaches, and finding fast, simple algorithms that are robust 

to variation is difficult (Brahnam et al., 2006; Brahnam et al., 2007). Categorizing the 

variation may be helpful in the development of effective face recognition algorithms 

(Matthew, 2003). Intrinsic sources of variation include identity, facial expression, 

speech, gender, and age (Daugman, 1997). Extrinsic sources of variation include 

viewing geometry pose changes, illumination (shading, color, self-shadowing), imaging 

processes (resolution, focus, imaging noise), and other objects (occlusions, shadowing, 

and indirect illumination). 

 

These sources of variation may or may not hinder the recognition process depending 

on the algorithm used. It is possible that the variation due to factors such as facial 

expression, lighting, occlusions, noise and pose is larger than the variation due to 

identity (Daugman, 1997). That makes identification under such varying environments a 
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difficult task. However, human proficiency at face recognition (Hochberg et al., 1967) 

has motivated enormous research in this area despite these challenges. Thus, this work 

seeks to solve the problems of infant face recognition system in different noise levels 

and illumination with new filter and new illumination normalization approach. 

 

1.3 Objectives 

 

The objectives of this research are as follows: 

1) To develop a new approach based on filter under varying conditions of noise 

level in preprocessing phase. 

2) To develop a new illumination normalization approach under varying 

conditions of illumination level. 

3) To determine the most salient and discriminative features by adopting the 

feature selection for optimizing on the accuracy of the decision making 

systems.  

4) To evaluate the performance of the new illumination normalization method 

for detecting illumination invariant capability in terms of sensitivity, 

specificity, accuracy, area under curve, Cohen’s kappa, precession, recall, f-

measure and execution time under different noise and illuminations levels. 

 

1.4 Scope 

 

As mentioned in the introduction, it seems not much attention is given to research 

on monitoring of infants in Neonatal Intensive Care Units (NICU). This work may 

answer many of the misconceived problems. In this work, one approach to Human 
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Computer Interface (HCI) for monitoring infant pain is presented. Most of the infants 

represent their pain through their facial appearance, and hence monitoring the whole 

body movement is not a viable solution. The facial appearance need to be monitored by 

the nurses at selected intervals and reported to doctors for possible further treatments. 

Detection of facial changes is very crucial for further treatment. This work is only 

limited to the face from infant COPE database. The database of whole images in this 

work only consists of upfront images and does not deal with different poses. Within this 

work, only common features such as PCA, LBP and DCT are adopted. However, 

different parameters and coefficient of features under different illumination levels and 

noise are adopted. Salt and pepper noise is employed rather than other noise because 

this type of noise always appears in digital images and is mostly adopted as a 

benchmark for filter performance evaluation. The proposed filter is tested with various 

quantitative measurements such as Peak Signal-to-Noise Ratio (PSNR), Mean Square 

Error (MSE), Image Enhancement Factor (IEF) and Mean Structural SIMilarity 

(MSSIM) Index. In this work, selected noise and illumination levels on the face of 

infant is investigated. Certain performance measurement such as Sensitivity, Specificity, 

Accuracy, Area under Curve (AUC), Cohen's kappa (k), Precession, F-Measure and 

Time Consumption are measured to validate the proposed illumination normalization 

technique. 

 

1.5 Dissertation Outline 

 

The chapters of this dissertation largely follow the order in which the work was 

done. The scope and objective of the work is presented in this chapter. The second 

chapter is a literature review encompassing most of infant monitoring research. This 
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