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Pencampuran antara Lapisan dalam Bahan Katod Litium Nikel Mangan Kobalt 

Oksida untuk Bateri Litium Cas Semula 

 

 

ABSTRAK 

 

 

Komposisi LiNi1/3Mn1/3Co1/3O2 dan analoginya Li[(Ni0.5Mn0.5)1-xCox]O2 telah disintesis 

menggunakan kaedah tindak balas keadaan pepejal konvensional untuk menilai kesan 

pengurangan kandungan kobalt dalam bahan katod bateri yang berstruktur garam batu 

berlapis. Analisis struktur menggunakan kaedah penyaringan Rietveld menggunakan 

data XRD konvensional telah mendedahkan bahawa kandungan kobalt adalah saling 

berhubungkait dengan kestabilan struktur bahannya. Had larutan pepejal bagi sampel 

fasa-tulen yang disintesis ialah sekitar x > 0.2 untuk Li[(Ni0.5Mn0.5)1-xCox]O2. Jumlah 

pencampuran antara lapisan telah meningkat bagi sampel yang mengandungi 20% atau 

kurang kandungan kobalt. Keputusan menunjukkan jumlah pencampuran antara lapisan 

paling minima yang boleh dicapai ialah lebih kurang 3.8% bagi komposisi 

LiNi0.4Mn0.4Co0.2O2 yang disintesis pada suhu 950 
o
C dalam oksigen berbanding dengan 

LiNi1/3Mn1/3Co1/3O2 iaitu sekitar 2%. Walau bagaimanapun, jumlah pencampuran antara 

lapisan berbeza-beza mengikut perubahan suhu dan keadaan sintesis. Kajian sistematik 

telah dijalankan untuk mengoptimumkan parameter penyaringan dan mengesahkan 

model struktur berdasarkan LiCoO2 sebagai piawaian. Di samping itu, kapasiti cas dan 

discas permulaan semasa kitaran bateri untuk LiNi0.4Mn0.4Co0.2O2 adalah agak tinggi 

dengan mencatat masing-masing ialah ~323 mAh g
-1

 dan ~229 mAh g
-1

. Namun begitu, 

ia mempunyai kehilangan kapasiti tidak boleh diubah yang tinggi selepas beberapa 

kitaran yang mungkin disebabkan oleh ketidakstabilan struktur semasa cas dan discas.  
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Interlayer Mixing in Lithium Nickel Manganese Cobalt Oxide Cathode Materials 

for Rechargeable Lithium Batteries 

 

 

ABSTRACT 

 

 

Composition of LiNi1/3Mn1/3Co1/3O2 and its analogous Li[(Ni0.5Mn0.5)1-xCox]O2 were 

prepared by conventional solid state method to evaluate the effect of reducing cobalt 

contents to the layered rock salt-type cathode materials. Structural analysis using 

Rietveld refinement of conventional XRD data revealed that the amount of cobalt 

contents is highly correlated to their structural stability. Solid solution limit for phase-

pure samples that were prepared is about x > 0.2 for Li[(Ni0.5Mn0.5)1-xCox]O2. The 

amount of interlayer mixing increased for samples contain 20% or less cobalt contents. 

The results showed that the minimum amount of interlayer mixing that could be 

achieved is about 3.8% for the composition of LiNi0.4Mn0.4Co0.2O2 that was prepared at 

950 
o
C in oxygen compared to LiNi1/3Mn1/3Co1/3O2 which is about 2%. However, the 

amount of interlayer mixing varies as a function of temperatures and conditions. 

Systematic investigation have been done to optimize refinement parameters and to 

validate structural model based on LiCoO2 as a standard.  On the other hand, the initial 

charge and discharge capacities during battery cycling for LiNi0.4Mn0.4Co0.2O2 is 

relatively high which recorded ~323 mAh g
-1

 and ~229 mAh g
-1

 respectively. But it has 

high irreversible capacity loss after a few cycles that are probably due to structural 

instability during charge and discharge.  
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Background 

 

Nowadays, batteries are the main source of power for portable electronic devices 

and also for automobile starting and ignition. The increasing global energy demands and 

the arising of environmental concerns have caused batteries to be intensively pursued 

for a widespread hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle 

(PHEV) applications. The batteries performances are affected by the materials used and 

the engineering involved in fabricating them (Arumugam, 2010). 

 

Batteries are commonly classified into primary and secondary batteries. Primary 

batteries cannot be electrically charged because there are irreversible chemical reactions 

involved in the electrode materials (Arumugam, 2010). However, they provide good 

storage characteristics and high energy density. They existed in many forms, for 

instances, lithium-thionyl chloride, lithium-carbon monofluoride and lithium-

manganese dioxide batteries. These batteries have been commercialised for more than 

30 years. Other batteries such as carbon-zinc, alkaline-manganese, zinc-air, and silver 

oxide-zinc batteries are used together with these batteries. 
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 Secondary batteries which are opposed to primary batteries can be electrically 

charged, and these batteries can save costs and resources. For example, lithium-ion and 

nickel-metal hydride batteries have been produced, and are used with the other 

secondary batteries, such as lead-acid, nickel-cadmium and coin-type lithium secondary 

batteries. The diversity and the applications for conventional and new practical battery 

systems have been increasing for the last 30 years. 

 

1.1.1 Lithium ion batteries 

 

Lithium-ion batteries which are in the family of rechargeable batteries are also 

well known as the most important energy storage device. They are lighter, can last for 

longer time and quicker to charge compared to their nickel-based relatives. The 

worldwide market for rechargeable lithium-ion batteries are now valued at 10 billion 

dollars per annum and is arising. Such rapid growth is mainly due to its higher energy 

density and better cycling performance than other energy storage devices. Recent 

demands on energy and environmental sustainability have further urged significant 

interest in a larger scale lithium-ion battery system for vehicles and grid load leveling 

(Choi, Wang, & Yang, 2011). 

 

The lithium-ion batteries have a quite straightforward energy storage mechanism 

in which they store electrical energy in electrodes that are made of lithium-intercalation 

(or insertion) compounds with reduction and oxidation processes occurring 

simultaneously at the two electrodes (Choi, Wang, & Yang, 2011). Lithium-ion 

batteries usually consist of complex lithium oxides containing a transition metal oxide 

as the positive electrode (cathode) material, a carbon material as the negative electrode 
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(anode) material and organic solvent as electrolyte between these two electrodes (Nishio 

& Furukawa, 1999). 

 

The lithium ion secondary battery (LIB) technology was initiated by Sony 

Corporation which brought out the lithium ion cells into the market first in the world in 

1991. Some basic characteristics of LIB are as follows (Yoshio, 2000). 

 

a. high energy density (both gravimetric and volumetric), 

b. high operating voltage, 

c. no memory effect, 

d. high drain capability, 

e. quick charge acceptance, 

f. low self-discharge rate, 

g. wide temperature range of operation 

 

When the cell is fabricated, it is in the discharge condition. When it is charged, 

both lithium ions and electrons move from the positive electrode to the negative 

electrode. The lithium ions move through the electrolyte whereas the electrons move 

through the external circuit during charging. Generally, the cells voltage will become 

higher as the potential of the cathode rises and that of anode is lowered during charging. 

When a load is connected between the positive and negative electrodes, the cell is 

discharged where the lithium ions and electrons move from the negative electrode to the 

positive electrode. Electrical energy is obtained as a result of the diffusion of lithium 

ions and electrons (Nishio & Furukawa, 1999). Fig. 1.1 illustrated the movements of 

lithium ions and electrons during charging and discharging. (Arumugam, 2010). 
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Figure 1.1: Diagram of the movements of lithium ions and electrons during charging 

and discharging (Arumugam, 2010). 

 

1.1.2 Components of lithium ion batteries 

 

As mention before, there are three main components in lithium ion batteries 

which include negative electrode (anode), electrolyte and positive electrode (cathode).  

 

i. Negative electrode (anode)  

 

In lithium ion battery, the anode is the negative electrode of a cell where 

oxidative chemical reactions occurred. During discharge, it releases electrons into the 

external circuit (Whittingham, 2004). There are a wide range of materials with potential 

and practical applications in the field of anode materials for lithium-ion batteries. 
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Initially, Li metals which have high energy density are used as anode. Since Li 

metals are very active, a passivating surface layer is formed on the lithium anode when 

Li reacts with the electrolyte. This protection layer prevents further reaction because it 

is an electronic insulator and a lithium ion conductor (Wakihara & Yamamoto, 1998). 

The usage of Li metal and alloys as the anode materials were until the 1980s due to 

safety issue (Aifantis & Hackney, 2010). However, lithium alloy anode materials have 

been reviewed focusing on the lithium alloying in Group IV and V elements and their 

composites from mechanistic aspects of (Park et al., 2010). 

 

In the past, carbon that is low cost, easily available and possible to be modified 

made it hard to be replaced by other anode material. Many researchers have been 

studied in depth on the alternative forms of carbon materials and their corresponding 

reaction mechanism, surface effects, new nano-materials and so on (Alcántara et al., 

2011). After year 1991 in which Sony Energytec Inc. first commercialised the lithium 

ion battery, graphite has become the standard anode for lithium ion batteries. It has a 

specific capacity of 300 mAh g
-1

 (Kendrick & Slater, 2011) However, the theoretical 

capacity (372 mAh g
-1

) is poor compared with the charge density of lithium (3,862 mAh 

g
-1

). Hence, novel graphite varieties and carbon nanotubes have been proposed to 

improve the capacity but they encountered with high processing costs (Wakihara & 

Yamamoto, 1998). 

 

Apart from carbonaceous material, there are a few materials which have drawn 

interests of many researchers. These include transition metal oxides, nitrides, 

phosphides, antimonides, silicon and silicon compound, last but not least, tin and tin 

alloy compounds.  
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