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EC

p

      winding eddy losses (W) 

h

P

(t)    harmonic losses 

NL  

P

    no load losses (W) 

OSL

P

      other stray losses in clamp, tanks, etc. 

LL

P

     load losses (W) 

T

t    thickness of lamination strips 

       total losses (W) 

vh

W

(t)    harmonic voltage 

e

W

     Eddy current losses (W) 

h

є

     Hysteresis losses (W) 

t

𝛷

      the coefficient depends on the instantaneous value of flux density 

ac

𝛷

     ac flux produced by ac current 

dc

𝛷 = 𝛷

     dc flux produced by dc current 

ac + 𝛷dc

𝛷

   total flux in the iron core 

s 

𝜃       the minimum angle in one cycle at which 𝛷 = 𝛷

     saturation flux 

s  
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xix 
 

μo      free space (vacuum) permeability (1.256 x 10-6 H/m or = 4 π 10-7

μ

 H/m) 

r

μ

     relative permeability 

c

η    Steinmetz constant 

       core material permeability 

χm

ℜ

     magnetic susceptibility 

a

ℜ

     air reluctance 

c

  

      core reluctance 
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xx 
 

Kesan Bias Arus Terus dan Hingar  Bising pada Prestasi         
Alatubah Tenaga 

 

 

ABSTRAK 

 

Arus terus dapat dijumpai dalam sebuah gulungan alatubah akibat ketidaksempurnaan 
sambungan kelengkapan seperti penggunaan peranti-peranti elektronik kuasa dan juga 
disebabkan gangguan magnetik medan bumi sebagai arus teraruh secara geomagnetic 
(GIC). Terdapat sejumlah kesan yang sangat mudarat yang berpotensi menyertai 
keberadaan arus terus dalam sebuah gulungan alatubah, seperti peningkatan pengenalan 
melampau herotan harmonik voltan dan arus, peningkatan kehilangan tenaga, tepuan  
setengah-kitar dari teras alatubah dan peningkatan pancaran bising akustik. 
Penyelidikan ini melibatkan gabungan simulasi MATLAB dan kerja-kerja ujikaji. 
Berdasarkan simulasi program MATLAB, keputusan menunjukkan bahawa arus 
penguja menjadi lebih terherot dan condong menepu setengah-kitar ketika arus terus 
bias meningkat dari 0.2 T sampai 2.0 T dengan  tahap tepu maksima dari ketumpatan 
fluks magnet ulangalik dimisalkan 2.0 T. Ujikaji makmal dilakukan pada sebuah 
alatubah tenaga satu fasa berskala makmal. Harmonik-harmonik pengujaan yang 
terhasil dari bias arus terus dan paras hingar yang dipancarkan oleh teras alatubah 
diselidiki. Bias arus terus disuntik bersamaan dengan punca arus ulangalik bagi keadaan 
tidak berbeban, sementara, melalui penerus setengah-gelombang beban bervariasi bagi 
keadaan berbeban. Dengan bias arus terus, alatubah cenderung menjadi tepuan 
setengah-kitar dan paras harmonik menjadi tinggi. Bentuk gelombang simulasi selari 
dengan bentuk gelombang dari ujikaji. Keberadaan bias arus terus ditandai dengan tertib 
sifar and harmonik- harmonik tertib genap secara bererti disamping harmonik-harmonik 
tertib ganjil. Harmonik-harmonik banyak menyumbang kepada kebisingan alatubah. 
Ketumpatan fluks magnetik yang lebih tinggi menghasilkan harmonik dan hingar yang 
lebih tinggi seperti 65.5, 68.4 and 72.4 dB untuk 1.3 T (teruja kurang), 1.5 T (kendalian 
normal) dan 1.9 T (teruja lebih). Secara keseluruhan, kehilangan tenaga dan harmonik-
harmonik adalah lebih rendah untuk pertindihan teras yang pendek dan pelapisan teras 
lebih tipis. Hasil dari penyelidikan ini menyumbang kepada pemahaman alatubah 
sebagai punca harmonik dan hingar semasa keberadaan arus terus bias.   
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xxi 
 

The Effect of DC Bias and Noise on the Performances of                    
Power Transformer 

 

 

ABSTRACT 

 

Direct current can be found in a transformer’s winding as a result of imperfections in 
connected equipment such as power electronics devices used and also due to magnetic 
disturbances of the earth’s field as geomagnetically induced currents (GIC). There are 
some host adverse effects that can potentially accompany the presence of direct current 
in a transformer’s windings, such as increased introducing extremely large voltage and 
current harmonic distortion, increased power losses, half-cycle saturated of the 
transformer core and elevated increasing of acoustic noise emission. This research 
involved the combination of MATLAB simulation and experimental works. Based on 
MATLAB program simulation, the results demonstrate that the exciting current 
becomes much more distort and will incline to half-circle saturation when the DC bias 
increases from 0.2 T to 1.0 T with the maximum saturation limit of AC magnetic flux 
density assumed as 2.0 T. A laboratory test is performed on lab-scale single phase 
power transformer. Excitation harmonics generated from dc biased and noise levels 
emitted by transformer core are investigated. The DC bias was injected simultaneously 
with AC source for no-load condition, meanwhile, through half wave rectifier with 
variable load for load situation. With DC bias, the transformer is prone to half-cycle 
saturated and rich harmonics are introduced. The simulated waveforms have good 
agreement with the measured one.  The existence of DC bias was signified with zero 
and the significantly of even order harmonics beside of odd order harmonics. The 
harmonics contribute most to transformer noise. The higher magnetic flux density 
produces large harmonic and also higher noise such as 65.5, 68.4 and 72.4 dB for 1.3 T 
(under excited), 1.5 T (normal operation) and 1.9 T (over excited). The overall power 
losses and harmonics is lower for smaller core overlap length and thinner thickness of 
core lamination. The results of this study contribute in understanding transformers as 
harmonic and noise sources during DC bias existence.  
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