SYNTHESIS AND CHARACTERIZATION OF BaTiO₃ PELLETS AND THIN FILMS

MEOR AHMAD FARIS BIN MEOR AHMAD TAJUDIN

UNIVERSITI MALAYSIA PERLIS

2014

SYNTHESIS AND CHARACTERIZATION OF BaTiO₃ PELLETS AND THIN FILMS

by

MEOR AHMAD FARIS BIN MEOR AHMAD TAJUDIN 1130410687

A thesis submitted in fulfillment of the requirements for the degree of

Master of Science (Materials Engineering)

School of Materials Engineering

UNIVERSITI MALAYSIA PERLIS

Year

2014

ACKNOWLEDGEMENT

In the name of Allah, I would like to give my highly gratitude for giving me the strength and patient in completing my Master thesis. I would like to express my utmost appreciation to my beloved family especially my parent person who are always give me a fully support to finish this thesis.

Thanks to my supervisor which is Dr. Yeoh Cheow Keat who never give-up to give advices, guidance and opinions in order to ensure my project successfully finish. This special thank is dedicated to his kindness and patient in guiding me throughout this research. Not to be forgotten, thanks to my co-supervisor, Dr.Mohd Sobri Idris a person who stay close and always give a support and opinion.

I would like to acknowledge the financial support provided by the Malaysian government which is from Fundamental Research Grant Scheme, FRGS (grant number: 9003-00280). I also like to thanks to School of Material Engineering, University Malaysia Perlis (UniMAP) for all support especially in providing a proper place and opportunity to use facilities to complete this research.

I would like to take this opportunity to express my thanks to Dean of Material School Engineering, Dr Khairel Rafezi, all lectures, teaching engineer's (PLV), and technicians especially Dr. Asri, Mr. Faizol Che Pa, Mr. Ruhiyuddin, Mr. Wan Arif, Mr. Hadzrol, Mr. Nasir, Mr. Azmi Aziz, and Mr. Rosmawadi for their cooperation and helping hand in giving a guidance, running a testing, and generate ideas. Last but not least, I want to gives my special thanks to all my friends especially Mohd Fuadi Pargi, Nur Azniza Ariffin, Anas Husnan, Zawawi and Amin Lotfi that always give moral support, sharing ideas and knowledge in the completion of this thesis.

TABLE OF CONTENTS

		PAGE
THES	SIS DECLARATION	i
ACKN	NOWLEDGEMENT	ii
TABL	LE OF CONTENTS	iii
LIST	OF TABLES	viii
LIST	OF FIGURES	ix
LIST	NOWLEDGEMENT E OF CONTENTS OF TABLES OF FIGURES OF ABBREVIATIONS OF SYMBOLS RAK RACF ^{INIE}	xiv
LIST	OF SYMBOLS	xvi
ABST	RAK SPEC	xviii
ABST	RACT	xix
CHAI	PTER 1 INTRODUCTION	
1.1	Background	1
1.2	Problem Statement	2
1.3	Objectives	5
1.4	Scope of Study	5

CHAPTER 2 LITERATURE REVIEW

2.1.	Introduction	7
2.2	Ferroelectric Materials	7

Bariu	m Titanate Structure	10
2.3.1	Perovskite Structure	11
2.3.2	Structural Phase Transitions in Barium Titanate	12
Bariu	m Titanate Synthesis Methods	13
2.4.1	Solid-state Method	14
2.4.2	Aqueous Methods	15
	2.4.2.1 Sol-gel	16
Electr	ical Properties of Barium Titanate	21
Imped	lance Spectroscopy	22
Calcir	• • • •	25
Thin I	Films	28
Depos	sition Techniques	29
2.9.1	Electrophoretic (EPD)	30
2.9.2	Sputtering	31
2.9.3	Hydrothermal	33
2.9.4	Pulse Laser Deposition (PLD)	36
2.9.5	Spin Coating	38
	2.9.5.1 Process	39
	2.9.5.2 Parameters Influencing Spin Coating	41
Inkjet	Printing for Synthesizing of BT	43
2.10.1	Basic Concepts of Inkjet Printer	44
2.10.2	Ceramic Inks	48
	2.10.2.1 Method of Preparation and its Properties	49
	2.10.2.2 Rheology of Ceramic Inks	51
	 2.3.1 2.3.2 Bariun 2.4.1 2.4.2 Electre Impede Calcier Thin H Depose 2.9.1 2.9.2 2.9.3 2.9.4 2.9.5 Inkjet 2.10.1 	 2.3.2 Structural Phase Transitions in Barium Titanate Barium Titanate Synthesis Methods 2.4.1 Solid-state Method 2.4.2 Aqueous Methods 2.4.2.1 Sol-gel Electrical Properties of Barium Titanate Impedance Spectroscopy Calcination and Sintering (Heat Treatment) Thin Films Deposition Techniques 2.9.1 Electrophoretic (EPD) 2.9.2 Sputtering 2.9.3 Hydrothermal 2.9.4 Pulse Laser Deposition (PLD) 2.9.5 Spin Coating 2.9.5.1 Process 2.9.5.2 Parameters Influencing Spin Coating Inkjet Printing for Synthesizing of BT 2.10.1 Basic Concepts of Inkjet Printer 2.10.2 Ceramic Inks

CHAPTER 3 RESEARCH METHODOLOGY

3.1	Introduction		54
3.2	Pellet	s (solid state)	54
	3.2.1	Raw Materials	55
	3.2.2	Mixing	55
	3.2.3	Compaction	56
	3.2.4	Sintering	57
	3.2.5	Compaction Sintering Testing 3.2.5.1 X-Ray Diffraction	58
		3.2.5.1 X-Ray Diffraction	58
		3.2.5.2 Thermogravimetric Analysis	59
		3.2.5.3 Scanning Electron Microscope	60
		3.2.5.4 Impedance Spectroscopy	60
3.3	Thin I	Films	61
	3.3.1	Raw Materials	62
	3.3.2	Solution Preparation for printing	62
	3.3.3	Ink Printer Calibration	67
\bigcirc	3.3.4	Mixing and Sintering	67
-	3.3.5	Testing	68
		3.3.5.1 X-Ray Diffraction	68
		3.3.5.2 Thermogravimetric Analysis	69
		3.3.5.3 Scanning Electron Microscope	69
		3.3.5.4 Atomic Force Microscope	69
		3.3.5.5 Impedance Spectroscopy	70

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Introduction	74
4.2	Density Test (pycnometer)	74
4.3	Phase Analysis	77
	4.3.1 Phase Analysis of Pellets	77
	4.3.2 Phase Analysis of Thin Films	80
4.4	Thermogravimetric Analysis	81
	4.4.1 TGA of Pellets	81
	4.4.2 TGA of Thin Films	83
4.5	 4.3.2 Phase Analysis of Thin Films Thermogravimetric Analysis 4.4.1 TGA of Pellets 4.4.2 TGA of Thin Films Microstructure of BT 4.5.1 SEM of Pellets 	86
	4.5.1 SEM of Pellets	86
	4.5.2 SEM of Thin Films	88
	4.5.3 AFM	90
4.6	Dielectric properties of BT	96
	4.6.1 Dielectric Properties of Pellets	96
	4.6.2 Dielectric Properties of Thin Films	112
\bigcirc	₹ ₹	

CHAPTER 5 CONCLUSION

5.1	Summary	126
5.2	Recommendations for Future Study	127

REFERENCES	128
APPENDIX A	141

APPENDIX C

143

o This term is protected by original copyright

LIST OF TABLES

TABLE		PAGE
3.1 Number of sample	preparation according to ratios and testing	55
3.2 Weight of $BaCO_3$ a	nd TiO _{2.}	55
3.3 Number of sample	preparation according to ratios and testing	62
3.4 Color conversion fr	rom CMYK to RGB system	68
4.1 Apparent density for	or BT pellets	75
4.2 Resistivity of BT (I	R_b) at various temperatures	103
4.3 Ferroelectric behav	or for each samples	105
4.4 Resistivity of BT (I	R_b) at various temperatures	118
4.5 Ferroelectric behav	ior for each samples	122
\odot		

LIST OF FIGURES

FIGUI	RE	PAGE
2.1	Phase diagram of BT	9
2.2	Transition of unit cell from cubic to tetragonal structure	10
2.3	Crystallographic changes of BT depending on temperatures	13
2.4	Sol-gel process	18
2.5	Flow chart of preparation process of BT and BST by sol-gel method wit	h 20
	the chemical formula	
2.6	Pattern of impedance spectra in different temperatures	24
2.7	EPD process showing positive charge particles moving towards negative electrode.	e 31
2.8	Sputtering vacuum deposition process	32
2.9	Schematic experimental set-up for the localized hydrothermal fabrication of thin films	n 34
2.10	Schematic diagram of PLD apparatus	37
2.11	Illustration of spin coating	39
2.12	Four stages of spin coating process	40
2.13	Schematic illustration of the principle of a DOD printhead	44
2.14	Classification of piezo inkjet (PIJ) printhead technologies by different mode of deformation to generate a drop	46

2.15	Schematic illustration of the principle of operation of a CIJ	47
2.16	Effect of PAA on the stability of BT ceramic inks	50
2.17	Viscosity of ceramic inks as a function of oxide volume fraction	52
2.18	Rheology properties of ceramic inks (BT) at different volume fraction for mixing process and sol-gel method	53
3.1	Mixing by using agate mortar Cold Hydraulic Press Machine Schematic of sintering process	56
3.2	Cold Hydraulic Press Machine	57
3.3	Schematic of sintering process	58
3.4	Scanning Electron Microscope (SEM)	60
3.5	Impedance spectroscopy	61
3.6	Titanium solution change color from (a) white to (b) colorless when drops of nitric acid were added	67
3.7	Schematic of thin films sintering process	68
3.8	Standard interdigital electrode	70
3.9	IS testing attached with horizontal tube furnace	71
3.10	The illustration of geometric parameter for calculating thin films permittivity	72
3.11	Summarization of research methodology	73
4.1	Apparent density of pellets samples	75
4.2	Microstructure of BT shows a pore trapped in red circles	76

4.3	XRD pattern for five different stoichiometry of BT at sintering temperature 1400 $^{\circ}\mathrm{C}$	78
4.4	XRD pattern for BT thin films prepared on glass substrate	80
4.5	TGA and DTG curves of BT pellets for S1, S2, S3, S4, and S5	82
4.6	TGA and DTG curves of BT sol-gel for S1, S2, S3, S4, and S5	84
4.7	SEM microstructure of 5 different samples of BT (S1, S2, S3, S4 and S5) sintered at 1400 °C	87
4.8	White precipitate cause printhead clogged	88
4.9	Cross section of thin film sample \$3	89
4.10	Cross section of thin films for (a), (b), (c), and (d) which is belongs to S1, S2, S4, and S5 respectively.	89
4.11	Atomic force micrographs of BT thin film annealed at 400 °C for S1	91
4.12	Atomic force micrographs of BT thin film annealed at 400 °C for S2	92
4.13	Atomic force micrographs of BT thin film annealed at 400 °C for S3	93
4.14	Atomic force micrographs of BT thin film annealed at 400 $^{\circ}$ C for S4	94
4.15	Atomic force micrographs of BT thin film annealed at 400 $^{\circ}\mathrm{C}$ for S5	95
4.16	Cole-Cole plot of BT at different temperatures for S1. The inset shows a (b) large scale of Cole-Cole plot at temperature 300 $^{\circ}$ C – 450 $^{\circ}$ C and (c) non-zero intercept at RT and 450 $^{\circ}$ C	97
4.17	Cole-Cole plot of BT at different temperatures for S2. The inset shows a (b) large scale of Cole-Cole plot at temperature $300 ^{\circ}\text{C} - 450 ^{\circ}\text{C}$ and (c) non-zero intercept at RT and 450 $^{\circ}\text{C}$	98

4.18 Cole-Cole plot of BT at different temperatures for S3. The inset shows a 99

	(b) large scale of Cole-Cole plot at temperature 300 $^\circ C$ – 450 $^\circ C$ and (c) non-zero intercept at RT and 450 $^\circ C$	
4.19	(a) Cole-Cole plot of BT at different temperatures for S4. The inset shows a (b) large scale of Cole-Cole plot at temperature 300 $^{\circ}$ C – 450 $^{\circ}$ C and (c) non-zero intercept at RT and 450 $^{\circ}$ C	100
4.20	Cole-Cole plot of BT at different temperatures for S5. The inset shows a (b) large scale of Cole-Cole plot at temperature $300 ^{\circ}\text{C} - 450 ^{\circ}\text{C}$ and (c) non-zero intercept at RT and 450 $^{\circ}\text{C}$	101
4.21	Resistance and capacitance model for BT pellets	102
4.22	Graph of R _b at different temperatures	103
4.23	Arrhenius plot for resistance elements with activation energy	104
4.24	Curie-Weiss plot for element 2	106
4.25	Curie-Weiss plot for element 3	107
4.26	C_{gb} for every samples at different temperatures and compositions	107
4.27	Graph of "vs. frequency	108
4.28	Frequency dependence of the loss tangent at various temperatures	109
4.29	Dielectric constant of various stoichiometry with different temperatures	110
4.30	Cole-Cole plot of BT thin film at different temperatures for S1. The inset shows a (b) large scale of Cole-Cole plot at temperature 200 °C – 300 °C and (c) non-zero intercept at RT and 300 °C	112
4.31	Cole-Cole plot of BT thin film at different temperatures for S2. The inset shows a (b) large scale of Cole-Cole plot at temperature 200 $^{\circ}C - 300 ^{\circ}C$ and (c) non-zero intercept at RT and 300 $^{\circ}C$	113
4.32	Cole-Cole plot of BT thin film at different temperatures for S3. The inset shows a (b) large scale of Cole-Cole plot at temperature $200 ^{\circ}\text{C} - 300 ^{\circ}\text{C}$	114

xii

4.33	Cole-Cole plot of BT thin film at different temperatures for S4. The inset shows a (b) large scale of Cole-Cole plot at temperature 200 $^{\circ}C - 300 ^{\circ}C$ and (c) non-zero intercept at RT and 300 $^{\circ}C$	115
4.34	Cole-Cole plot of BT thin film at different temperatures for S5. The inset shows a (b) large scale of Cole-Cole plot at temperature 200 °C – 300 °C and (c) non-zero intercept at RT and 300 °C	116
4.35	Standard interdigital electrode Graph of R_b at different temperatures Arrhenius plot for thin films	116
4.36	Graph of R _b at different temperatures	119
4.37	Arrhenius plot for thin films	120
4.38	Curie-Weiss plot for grain	121
4.39	C_{gb} for every sample at different temperatures	122
4.40	Loss tangent versus frequency at different temperatures	123
4.41	Dielectric constant of thin films against temperature	124
\bigcirc		

and (c) non-zero intercept at RT and 300 $^\circ \text{C}$

LIST OF ABBREVIATIONS

AFM	Atomic Force Microscope
Ba	Barium
BaCO ₃	Barium carbonate
BaO	Barium carbonate Barium oxide Barium orthotitanate Barium titanate
Ba ₂ TiO ₄	Barium orthotitanate
BaTiO ₃	Barium titanate
Ba : Ti	Barium to titanium ratio
ВТ	Barium titanate
СМҮ	Cyan, Magenta, and Yellow color
CII ; remis	Continuous Inkjet
DOD	Drops on Demand
DTG	Differential Thermalgravimetric
EPD	Electrophoretic
FWHM	Full Width at Half Maximum
IS	Impedance Spectroscopy
PAA	Polyacrylic Acid
PIJ	Piezo Inkjet

Pulse Laser Deposition PLD

PTC Positive Temperature Coefficient

Surface Roughness Ra

RGB Red, Green, and Blue color

SEM Scanning Electron Microscope

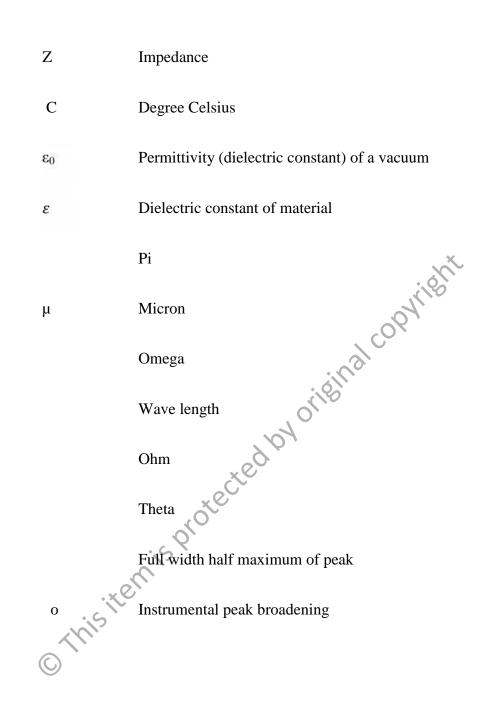
stieinal copyright Thermal gravimetric Analysis

Titanium

Titanium dioxide TiO₂

An isoprop. X-Ray Diffraction

TGA


Ti

Titanium isopropoxide

xv

LIST OF SYMBOLS

А	Area
С	Capacitance
D	Thickness
d	Spacing between planes
E	Total Voltage
F	Force
f	Frequency
Hz	Thickness Spacing between planes Total Voltage Force Frequency Hertz
Ι	
M	Molarity
MHz	Megahertz
MPa	Megapascal
Ν	Newton
Р	Pressure
Q	Electrical charge can be stored
R	Resistance
V	Applied voltage

Sintesis dan Pencirian Pelet dan Filem Nipis BaTiO₃

ABSTRAK

Barium titanat telah disintesiskan dengan pendekatan kaedah keadaan pepejal dan akueus. Sintesis keadaan pepejal digunakan untuk menyediakan pelet barium titanat dengan menggunakan kaedah metalurgi serbuk. Barium karbonat dan titanium dioksida dicampurkan bersama dalam jumlah yang sesuai di dalam lesung batu akik. Pelet barium titanat dicampurkan berdasarkan 5 nisbah Ba/Ti yang berbeza iaitu 1:0.9, 1:0.95, 1:1, 1:1.05, 1:1.1. Pelet telah disinterkan di udara pada suhu 1400 °C. Filem nipis barium titanat disediakan dengan kaedah akueus. Sol-gel barium titanat disediakan berdasarkan nisbah yang sama dengan pelet. Filem nipis sol-gel barium titanat telah disadur di atas substrat kaca menggunakan pencetak berkomputer dan dibakar pada 400 °C. Pelet dan filem nipis kedua-duanya dicirikan dengan menggunakan pembelaun sinar-X, mikroskop pengimbas elektron, mikroskop daya atom (filem nipis sahaja), dan spektroskopi galangan. Fokus tesis ini adalah menentukan ciri-ciri dielektrik barium titanat termasuk rintangan, kapasitan, pemalar dielektrik, frekuensi pengenduran, dan tangen kehilangan. Ketumpatan tertinggi untuk barium titanat pelet adalah 5.90 g/cm³ iaitu apabila Ba: Ti adalah 1:1 digunakan. Purata ketebalan filem nipis adalah 2.89 nm seperti yang diukur oleh mikroskop daya atom dan disahkan oleh mikroskop pengimbas electron. Ciri-ciri barium titanat telah diperhatikan dalam suhu yang berbeza-beza bermula dari suhu bilik sehingga ke 450 °C (untuk pelet) dan 300 °C (untuk filem nipis). Pemalar dielektrik untuk pelet telah diukur pada 10 kHz (suhu bilik) adalah berbagai-bagai dari maksimum iaitu 2810 sehinggalah paling minimum iaitu 1375. Sampel dengan nisbah Ba:Ti 1:1 menunjukkan nilai pemalar dielektrik yang tertinggi. Nilai pemalar dielektrik yang tertinggi diukur pada 100 °C iaitu pada sampel stoikiometri. Keputusan pembelauan sinar-X menunjukkan pembentukan fasa kedua, Ba₂TiO₄ apabila lebihan barium sebanyak 5 % dan 10 % ditambah. Filem nipis barium titanat menunjukkan kehabluran yang rendah berbanding pelet. Pengukuran kelebaran puncak pembelauan sinar-X pada filem nipis menunjukkan purata saiz hablur adalah 14 nm berbanding pelet iaitu 110 nm. Spektroskopi galangan barium titanat pelet menunjukkan kehadiran komponen rintangan sempadan butir, komponen konduksi butir, dan juga komponen ketiga feroelektrik. Kehadiran komponen yang berkenaan ini disahkan melalui plot "Curie Weiss". Filem nipis barium titanat tidak menunjukkan kehadiran komponen feroelektrik. Pemalar dielektrik pelet (= 2810) adalah jauh lebih tinggi berbanding dengan pemalar dielektri filem nipis (= 342) dan ini disebabkan oleh kehabluran yang rendah pada filem nipis

Synthesis and Characterization of BaTiO₃ Pellets and Thin Films

ABSTRACT

Barium titanate was synthesized using a solid state approach and an aqueous method. Solid state syntheses were used to prepare barium titanate pellets using a powder metallurgy method. Appropriate amounts of barium carbonate and titanium dioxide powder were mixed together in an agate mortar. Barium titanate pellets were mixed according to 5 different ratios of Ba/Ti which are 1:0.9, 1:0.95, 1:1, 1:1.05, 1:1.1. Pellets were sintered in air at a temperature 1400 °C. Barium titanate thin films were prepared using an aqueous method. Sol-gel of barium titanate was prepared according to the similar ratios as pellets. Thin films of barium titanate solvel were deposited using a desktop printer onto a glass substrate and fired at 400 °C. Both pellets and thin films were characterized by X-ray diffraction, scanning electron microscope, Atomic Force Microscope (thin films only), and impedance spectroscopy. This thesis focuses on determination of dielectric properties of barium titanate including the resistance, capacitance, dielectric constant, relaxation frequency, and loss tangent. The highest density for the barium titanate pellets were 5.90 g/cm³ when a Ba:Ti ratio of 1:1 was used. The average thicknesses of the thin films were 2.89 nm as measured using the atomic force microscope and verified using the scanning electron microscope. Characteristic of barium titanate were observed under various temperatures starting from room temperature up to 450 °C (for pellets) and 300 °C (for thin films). The measured dielectric constant of the pellets at 10 kHz (at room temperature) varied from a maximum of 2810 to a minimum of 1375. Samples with Ba:Ti ratio of 1:1 show the highest dielectric properties. The highest dielectric constant was measured at 100 °C for stoichiometric samples. X-ray diffraction result shows the production of a secondary phase, Ba₂TiO₄ when barium excess of 5 % or 10 % was added. The barium titanate thin films showed lower crystallinity than the pellets. X-ray diffraction peak broadening measurements of the thin films show an average crystallite size of 14 nm compared to 110 nm for the pellets. Impedance spectroscopy of the barium titanate pellets show the presence of a resistive grain boundary component, a conductive bulk component as well as a ferroelectric third component. The presence of these components were verified via Curie Weiss plots where applicable. The barium titanate thin films did not show the presence of the ferroelectric component. The dielectric constant of the pellets (= 2810) were significantly higher than the dielectric constant of the thin films (= 342) and this was attributed to the lower crystallinity of the thin films.

UNIVERSITI MALAYSIA PERLIS

DECLARATION OF THESIS							
Author's full name		MEOR AHMAD FARIS BIN MEOR AHMAD TAJUDIN					
Date of birth		6 APRIL 1988					
	•						
Title	:	SYNTHESIS AND CHARACTERIZATION OF BaTIO3 PELLETS AND					
		THIN FILMS					
Academic Session	:	2013/2014					
I hereby declare that the thesis becomes the property of Universiti Malaysia Perlis (UniMAP) and to be placed							
at the library of UniMA	P. This t	hesis is classified as :					
		O THO					
	AL	(Contains confidential information under the Official Secret Act 1972)*					
)	(Contains restricted information as specified by the organization where					
		research was done)*					
	SS	I agree that my thesis is to be made immediately available as hard					
	•	copy or on-line open access (full text)					
I, the author, give per	mission	to the UniMAP to reproduce this thesis in whole or in part for the purpose of					
research or academic exchange only (except during a period of years, if so requested above).							
, mil	>						
©		Certified by:					
\bigcirc							
SIGN	ATURE	SIGNATURE OF SUPERVISOR					
8804	06-08-6	501 DR. YEOH CHEOW KEAT					
(NEW IC NO.							
Date :		Date :					

NOTES: * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentially or restriction.

CHAPTER 1

INTRODUCTION

1.1 Background

Barium titanate (BT) is a type of dielectric material can be produced by firing a mixture of barium carbonate (BaCO₃) and titanium dioxide (TiO₂) in a high temperature. However, inappropriate mixing ratios or firing temperatures may cause the existence of other phases which lower the properties of BT. This research tries to evaluate the effects of Ba.Ti ratio and sintering temperatures on the dielectric properties of BT using impedance spectroscopy (IS).

BT can also be fabricated in the form of thin film. Thin film is the act of applying a thin film to a surface of a substrate with a very thin layer (few nanometers). Thin film deposition is divided into two techniques which are physical technique and chemical technique. However to fabricate a thin film by the physical technique is very costly where the vacuum system is needed, leaving the chemical technique. Until now, the chemical technique of leaving the solution deposition onto the substrate is also costly. To overcome this problem, inkjet printer is an alternative solution to fabricate a thin film of BT with a lower cost. This research aims to compare between the BT pellets and thin films produced by inkjet printer.

1.2 Problem Statement

BT one of the best material to produce a dielectric component because this material has a high dielectric constant. However, it is not easy to produce pure BT. Until now, people had a challenge to produce a pure BT because there has an existence of other phases during the production of BT. This phenomenon will affect the dielectric constant and also the cost of production will be higher. So, to overcome this problem, the optimum ratio between the raw material which is barium and titanium should be identified to ensure the reaction between these two kinds of compound is homogeneous where the pure of BT is produced without existence of any unwanted phases. Hence, in this thesis the ratio between barium and ntanium were manipulated starting from an excess of barium ratio, followed by an excess of titanium ratio, and lastly the ratio between barium and titanium equal 1:1. Sintered BT having dense and fine grain microstructure shows better performance. Therefore, nowadays enormous efforts have been devoted to develop a powder synthesis which produces well crystallized BT particles with suitable particle size and morphology.

The stoichiometry between barium and titanium plays important role in the production of high quality of ferroelectric BT. Previous researchers state that the stoichiometry between barium and titanium give an effect to the dielectric properties of BT (W. P. Chen et al., 2008). The excessive of barium or titanium will influence to the production of secondary phase which is Ba_2TiO_4 and $Ba_2Ti_5O_{12}$. The effect of stoichiometry also will change the microstructure and density of BT (Erkalfa et al., 2003). It is important to know the stoichiometry of BT in order to produce a high quality of ferroelectric BT.

Basically, BT has 4 different structures which is rhombohedral, orthorhombic, tetragonal, and cubic where this structure will change depending on temperatures. Every structure will show different dielectric properties. Khatri et al. state the dielectric properties of ceramic will change when different temperatures was applied (2008). The resistivity of ceramic was decrease with the increasing of temperature. It is very important to study and clearly understand the characteristic of BT in the various temperatures condition in order to use this kind of material in an appropriate condition.

In the past decade, BT has been produced by a solid-state which is mixing between BaCO₃ and TiO₂ at temperature above 900 °C. However, the microstructure produced by this method has not meet the electronic applications requirement because the production of BT is not enough fine and lack of uniform (Hu et al., 2000). Furthermore, this solid-state technique used a high temperature and certainly using the high cost of processing So, new alternative technique is needed to overcome this problem where the cost to fabricate a thin film of BT should be cheaper. The sol-gel technique provides big approaches to produce inorganic polymer and organic-inorganic hybrid materials (Kumar et al., 2008). The purpose of using sol-gel technology historically has been mentioned in the middle of 1800's and Schoot Glass Company (Jena, Germany) use this technology for a year later (Brinker & Scherer, 1990). In this method, there can be extraordinary conditions where this sol-gel method can be used to produce products of various shapes, sizes and formats (e.g. films, fibers, monoliths and monosized particles). This technology then developed in many applications of new materials for catalyst (Schubert, 1994), membranes (Brinker et al., 1995), fibers (Zeng et al., 2001), chemical sensors (Wolfbeis et al., 1996), optical gain media (Gvishi et al., 1997), linear applications and photochromic (Levy & Eszquivias, 1995) and solid state electrochemical devices (Dunn et al., 1994). Also wide applications in engineering and