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Kesan Muatan Serat Bulu Ayam dan Modifikasi Kimia pada Komposit Polietilena 

Ketumpatan Tinggi Kitar Semula/Getah Asli/Serat Bulu Ayam 

ABSTRAK 

Komposit polietilena ketumpatan tinggi kitar semula/getah asli/serat bulu ayam 

(RHDPE/NR/CFF) telah disediakan menggunakan Brabender Plasticorder pada suhu 

160˚C dan kelajuan rotor 50 rpm. Kesan kandungan CFF dan ejen gandingan ke atas 

sifat-sifat tegangan, sifat pembengkakan, morfologi, analisis spektroskopi inframerah 

(FTIR), pemeteran kalori pengimbasan kebezaan (DSC) dan analisis pemeteran graviti 

haba (TGA) komposit RHDPE/NR/CFF telah dikaji. Keputusan menunjukkan bahawa 

penambahan CFF telah mengurangkan kekuatan tegangan, pemanjangan pada takat 

putus dan darjah penghabluran, manakala modulus Young, peratus pembengkakan berat 

dan kestabilan terma komposit pula telah meningkat. Ejen gandingan seperti benzil urea 

dan ɛ-Kaprolaktam telah digunakan, dimana kesan positif pada sifat-sifat tegangan dan 

sifat pembengkakan komposit RHDPE/NR/CFF telah dihasilkan. Kehadiran benzil urea 

dan ɛ-Kaprolaktam telah meningkatkan kekuatan tegangan, modulus Young, dan 

kestabilan terma tetapi telah mengurangkan darjah penghabluran. Di samping itu, 

komposit RHDPE/NR/CFF juga telah dirawat menggunakan etanol dan metil 

metakrilat. Komposit RHDPE/NR/CFF dengan rawatan etanol mempunyai kekuatan 

tegangan, modulus Young, dan kestabilan terma yang lebih tinggi tetapi pemanjangan 

pada takat putus, peratus pembengkakan berat dan darjah penghabluran pula lebih 

rendah jika dibandingkan dengan komposit RHDPE/NR/CFF dengan rawatan metil 

metakrilat. Mikroskop penskanan elektron (SEM) permukaan patahan tegangan untuk 

komposit modifikasi kimia dengan benzil urea, ɛ-Kaprolaktam, etanol dan metil 

metakrilat menunjukkan bahawa interaksi antara muka di antara CFF dengan adunan 

RHDPE/NR adalah lebih baik dibandingkan dengan komposit kawalan 

RHDPE/NR/CFF. 
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The Effect of Chicken Feather Fiber Loading and Chemical Modification of 

Recycled High Density Polyethylene/ Natural Rubber/ Chicken Feather Fiber 

Composites 

ABSTRACT 

Recycled high density polyethylene/ natural rubber/ chicken feather fiber 

(RHDPE/NR/CFF) composites had been prepared using Brabender Plasticorder at 

temperature 160˚C and rotor speed of 50 rpm. The effect of CFF content and coupling 

agent on tensil properties, swelling behavior, morphology, spectroscopy infrared (FTIR) 

analysis, differential scanning calorimetry (DSC) and thermogravimetric analysis 

(TGA) of RHDPE/NR/CFF composites were studied. The result showed that the 

addition of CFF reduced the tensile strength, elongation at break and degree of 

crystallinity, whereas the Young’s modulus, weight swell percentage, and the thermal 

stability of composites increased. Coupling agent such as benzyl urea and ɛ-

Caprolactam were used, which resulted in positive effect on mechanical properties, and 

swelling behavior of RHDPE/NR/CFF composites. The presence of benzyl urea and ɛ-

Caprolactam, have increased the tensile strength, Young’s modulus, and thermal 

stability but the degree of crystallinity decreased. In addition, RHDPE/NR/CFF 

composites were treated using ethanol and methyl methacrylate. The ethanol treated 

RHDPE/NR/CFF composites have higher tensile strength, Young’s modulus, and 

thermal stability but lower elongation at break, weight swell percentage and the degree 

of crystallinity compared to the methyl methacrylate treated RHDPE/NR/CFF 

composites. The scanning electron microscopy (SEM) micrographs of tensile fracture 

surfaces for the composites with chemical modification of benzyl urea, ɛ-Caprolactam, 

ethanol and methyl methacrylate indicated that the interfacial interaction between CFF 

and RHDPE/NR blends were better than the control RHDPE/NR/CFF composites. 
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CHAPTER 1 

  

INTRODUCTION 

 

 

1.1 Research Background 

 

Thermoplastic elastomers (TPEs) are rubbery materials with an equivalent 

performance in terms of elasticity as the conventional thermoset rubbers. Due to the 

favorable manufacturing methods and environmental considerations, replacement of 

conventional vulcanized rubber by TPEs for industrial applications is growing rapidly.  

The major advantage in some cases is that the middle range properties are better 

than those showed by either of the single materials. Moreover, some adjustments in 

terms of, cost, processing characteristics and durability are achievable through polymer 

blending. Thermoplastic elastomers (TPEs) can be fabricated from polymer blends made 

up of thermoplastic polymers, non-vulcanized rubber and vulcanized rubber (Nevatia et 

al., 2002). The resulting TPEs exhibit rubbery characteristics while retaining its thermo 

plasticity. The excellent properties of TPEs make them cover a wide range of 

applications in many industries, particularly in automotive industry such as body side 

moldings, interior skin and airbag covers. Other major applications are weather 

stripping, wire insulation, food wear and general mechanical goods such as hose and 

tube. 
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In addition, the TPEs have a lot of commercial significance, which is fabricated 

without having vulcanization process, while available for reprocessing work to avoid 

the waste (Kahar et al., 2012). Among the various types of TPEs, the blending of natural 

rubber (NR) and polyolefin (Polyethylene) physically had caught respectable attention 

because of the uncomplicated preparation and less effort to achieve the needed technical 

properties. Furthermore, its environmental friendly approach has gain a lot of reputation 

since TPEs is recyclable. It has the potential to be recycled again and again without 

suffering losing the substantial properties (Grigoryeva et al., 2004). 

Recycled polyethylene is the largest amount plastic manufactured in the world and 

extensively used polyolefin. Recycled polyethylene is produced in numerous polymeric 

forms, varying by their linearity and molecular weight, or branches, or presence of 

irregularities and many more. The density of the polymer is used as the principals 

classification features of polyethylene (Klyosov, 2007). Polyethylene exhibits a range of 

tensile strength and flexibilities, is generally tough, can be readily extruded or molded, 

and is relatively inexpensive. These characteristics guarantee that the various families of 

PE find major use as a commodity polymer. 

The post-consumer plastics recycling stays one of the desired recycling options for 

ecological and energy reasons, as long as it stays economically profitable. The recycled 

post-consumer plastics are low in cost, due to the rising number of plastic waste 

produced daily in large cities around the world. Furthermore, the post-consumer plastics 

recycling offer the solution for landfill problem. The municipalities are becoming more 

concerned about the increasing of plastic waste generation every year (increasing at 

25% per year) when the landfill area only capable to increase at 7.5% per year. It is 

estimated that by 2015, there will be out of disposal options for plastic waste. 
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High density polyethylene (HDPE) is a famous plastic type due to its versatility, 

having a wide range of applications such as consumer goods, containers and furniture. 

Post-consumer HDPE from bottles is a fascinating source of recycled material because, 

on one hand, it cannot be used again in alimentary applications and, on the other hand, 

its high melting viscosity makes direct transformation via injection moulding very 

difficult. Recycled HDPE can be used in an increasing amount of potential applications, 

as long as the mechanical, impact, and thermal properties of the material (recycled-

virgin) is not far from each other (Maspoch et al., 2005). 

Natural rubber (NR) is an elastomer acquired from rubber tree latex that consist of 

93–95% cis-1, 4-polyisoprene. NR has various outstanding properties, such as high 

strength, superior resilience, and good processability. The good properties, especially 

resilience, play an important role among other elastomers (Harper, 2000). The 

applications of NR include automotive tire, tire tread, gloves, and mechanical goods. 

Polymer composites are the combinations of materials consisting reinforcing phase 

(fibers, particles or sheets) and the matrix phase (polymer, ceramic or metal). Leading 

elements in a fiber-reinforced composite material are the matrix and reinforcing fibers. 

The main idea of filler into the composites is to improve certain properties and lower 

the cost of the composites (Manchado & Arroyo, 2002). 

 Proper decision of the fiber length, fiber type,  fiber orientation and fiber volume 

fraction is very crucial, since it influences the density, cost, and the composite 

properties such as tensile properties (Cao et al., 2012), thermal properties (Singha & 

Thakur, 2009), mass swell resistance (Abu Bakar et al., 2010). The strength and the 

stiffness of the composites are influenced by disorientation of fibers, fibers of 

nonuniform strength, discontinuous fibers, Interfacial conditions and the residual 
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stresses. For example, composites strength and stiffness will be reduced when the fibers 

are not parallel to the loading direction.  

The application of natural fibers for the composites reinforcement has caught 

growing attention. It holds many significant rewards over synthetic fibers (Begum & 

Islam, 2013). At this moment, numerous types of natural fibers have been studied for 

use in composites such as jute straw (Liu & Dai, 2007), hemp (Placet et al., 2012), flax 

(Bourmaud et al., 2013), rice husk (Ndazi et al., 2007), wood (Coutinho & Costa, 1999), 

wheat (Panthapulakkal et al., 2006), sugarcane (Lu et al., 2006), grass (De et al., 2004), 

kenaf (Feng et al., 2001), ramie (Goda et al., 2003), reeds (Han et al., 2001), sisal (Nair 

et al., 2000), coir (Rout et al., 2001), water hyacinth (A. G. Supri & Lim, 2009), kapok 

(G. V. Reddy et al., 2008), banana fiber (Pothan et al., 2003), pineapple leaf fiber (J. 

George et al., 1997) and papyrus (Nishino et al., 2007).  

Natural fibers are extensively separated into three classes depending on their source: 

animal based, plant based, and mineral based. Plant-based fibers are ligno-cellulosic in 

nature consisted of lignin, hemicellulose and cellulose. On the other hand, animal based 

fibers are of proteins such as wool and silk. Generally, a mineral based composite is 

asbestos fiber and is only a naturally occurring mineral fiber (silicate based mineral). 

Natural fiber-reinforced polymer composites have captivated many research pursuits 

due to their possibility to replace synthetic fiber composites such as carbon or glass 

fiber composites (Bledzki & Gassan, 1999). This happens because of natural fibers 

exceed synthetic fibers in term of less damage to processing equipment, lower weight, 

lower cost, good relative mechanical properties, better surface finish of moulded parts 

composite and renewable resources (Corbiere-Nicollier et al., 2001; Joshi et al., 2004). 

However, despite the potential of replacing the synthetic fibers, natural fibers do have 
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some problems at high fiber content due to the fiber-fiber interaction and fiber 

dispersion problems. 

 Many researchers reported that the mechanical properties for polymer composites 

reinforced with natural fiber are largely dependent on the matrix-fiber interface 

adhesion (Chin & Yousif, 2009; Rosa et al., 2009). This is primarily because natural 

fibers are abundant in hemicellulose, celluloses, lignin and pectin, which are hydroxyl 

groups. Natural fibers have the tendency to be hydrophilic and strong polar materials 

while polymers are hydrophobic. As a result, there are obvious problems of the matrix-

fiber incompatibility, which weakens natural fiber-matrix interface area. However, 

many researchers suggested that chemical treatments namely alkali, acetylation, and 

bleaching treatment may enhance the interfacial adhesion between the matrix and the 

fiber (Alawar et al., 2009; Cantero et al., 2003; Haque et al., 2009; Hepworth et al., 

2000; Saha et al., 2010). These chemical treatments clean the fibers surface from 

impurities thus increases the fiber surface roughness and interrupting the moisture 

absorption process by withdrawing the OH groups in fiber (Shalwan & Yousif, 2013). 

ε-Caprolactam (C6H11NO, CPL) is used as a coupling agent in this research. It is a 

popular industrial organic chemical material that is used widely in the manufacture of 

polyamide engineering plastics and fiber. The final product properties depend on the 

purity of ε-Caprolactam. Water is widely occurring impurity in ε-Caprolactam, and it is 

usually eliminated by distillation. ε-Caprolactam is heat-sensitive substance, thus, the 

triple-effect evaporation process is widely used in the manufacture of high-quality 

caprolactam (Lin et al., 2012). Recently, Zhu et al. (2010) and Li et al. (2010) 

synthesized crosslinked PVA and other polymer membranes for the PV separation of 

CPL-water solution. The researchers reported that the decreasing crystallinity of the 

membrane‘s active layer will increased the flux.  
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