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Pengesanan Berasaskan Isyarat Fisiologi Untuk Hipo-Kewaspadaan 

Pemandu Menggunakan Spektrum Tertib Lebih Tinggi 

ABSTRAK 

Dalam tahun-tahun kebelakangan ini, hipo-kewaspadaan melibatkan pemandu yang mengantuk 

dan pemandu yang lalai adalah salah satu punca utama kemalangan jalan raya dan boleh 

menyebabkan kecederaan fizikal yang teruk, kematian dan kerugian ekonomi yang signifikan. 

Statistik menunjukan terdapatnya satu keperluan sistem pengesanan hipo-kewaspadaan 

pemandu dengan kebolehpercayaan tinggi yang dapat memberi amaran kepada pemandu 

sebelum sesuatu kejadian yang tidak diingini yang berlaku. Kajian sebelum ini hanya 

melaporkan tentang pengesan sama ada berkaitan dengan kemengantuk atau kelalaian. Dalam 

karya ini, kami berhasrat untuk membangunkan suatu sistem yang boleh mengesan hipo-

kewaspadaan, yang melibatkan kedua-dua kemengantuk dan kelalaian, menggunakan isyarat 

Elektrokardiogram (ECG) dan Electromyogram (EMG).  Penyelidik telah mencubaan untuk 

menentukan kemengantuk pemandu atau pemandu yang tidak memberi tumpuan menggunakan 

ukuran-ukuran berikuti: (1) ukuran-ukuran subjektif, (2) ukuran-ukuran berasaskan kenderaan, 

(3) ukuran-ukuran tingkah laku dan (4) ukuran-ukuran fisiologi. Satu kajian terperinci 

mengenai ukuran-ukuran ini berkenaan sensor yang digunakan, kelebihan dan kekurangannya 

pada setiap ukuran diberikan. Cara-cara yang berbeza di mana kemengantuk dan kelalaian telah 

dimanipulasikan secara eksperimen juga dibincangkan. Isyarat ECG dan EMG adalah kurang 

intrusif berbanding dengan isyarat fisiologi yang lain dan memberikan keadaan sebenar 

pemandu.Kemengantuk telah dimanipulasi dengan membenarkan pemandu untuk memandu 

pada kelajuan yang terhad dan membosankan untuk tempoh yang lama dan kelalaian telah 

dimanipulasi dengan meminta pemandu untuk berintraksi terhadap panggilan telefon dan 

khidmat pesanan ringkas. Sejumlah 15 subjek lelaki mengambil bahagian dalam proses 

pengumpulan data. Mereka memandu selama dua jam dalam persekitaran simulasi, pada tiga 

sela masa yang berlainan (00:00 - 02:00 jam, 3:00-5:00 jam dan 15:00 - 17:00 jam) iaitu apabila 

irama sirkadian mereka adalah rendah. ECG, EMG dan video telah dirakam pada keseluruhan 

eksperimen. Isyarat fisiologi yang diperolehi ini telah dipraproseskan untuk mengeluarkan 

hinggar dan artifak yang tidak diingini. Ciri-ciri hipo-kewaspadaan disari daripada isyarat 

praproses menggunakan ciri-ciri statistik konvensional, statistik tertib lebih tinggi dan spektrum 

tertib lebih tinggi. Perbezaan statistik yang signifikan dapat diperhatikan antara keadaan-

keadaan kewaspada, kemengatukkan dan kelalaian pada kedua-dua isyarat fisiologi. Ciri-ciri 

yang telah diklasifikasikan menggunakan k nearest neighbor, analisis diskriminan linear dan 

analisis diskriminan kuadratik. Ciri-ciri tenaga isyarat ECG memberikan ketepatan maksimum 

93,35%. Ciri-ciri dwispektrum memberikan ketepatan maksimum keseluruhan 96.75% dan 

92.31% untuk isyarat ECG dan EMG masing-masing menggunakan validasi k fold. ECG dan 

EMG isyarat telah digabungkan dengan menggunakan analisis komponen utama untuk 

mendapatkan ciri-ciri pengabungan optimum dan ketepatan klasifikasi adalah 96%. Dalam kes 

kemengantukkan, pemandu perlu disedarkan pada masanya. Oleh itu, pelbagai peringkat 

kemengantukkan dikelaskan dengan ketepatan keseluruhan 71%. Menyedarkan pemandu pada 

peringkat awal kemengantukkan dapat mengurangkan kemalangan. Pada masa hadapan, 

prestasi sistem pengesanan hipo-kewaspadaan boleh dipertingkatkan dengan penggabungan 

ukuran-ukuran fisiologi dengan ukuran-ukuran berasaskan imej dari video dan ukuran-ukuran 

berasaskan kenderaan. Kami menyimpulkan bahawa dengan merekabentuk suatu sistem hibrid 

pengesanan kemengantukkan yang menggabungkan ukuran-ukuran fisiologi yang tidak intrusif 

dengan ukuran-ukuran lain dapat menentukan tahap kemengantukkan pemandu secara tepat. 

Banyak kemalangan jalan raya boleh dielakkan jika amaran dihantar kepada pemandu apabila 

dia dianggap mengantuk. 
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Physiological Signal Based Detection of Driver Hypovigilance  

using Higher Order Spectra 

ABSTRACT 

In recent years, driver hypovigilance which includes driver drowsiness and driver 

inattention is one of the major causes of road accidents and can lead to severe physical 

injuries, deaths and significant economic losses. Reliable driver hypovigilance 

detection system which could alert the driver before a mishap happens would ensure 

less road accidents. Previous research works have reported only on detecting either 

drowsiness or inattention. In this work, the focus is on developing a system that can 

detect hypovigilance, which includes both drowsiness and inattention, using 

Electrocardiogram (ECG) and Electromyogram (EMG) signals. Researchers have 

attempted to determine driver drowsiness or driver inattention using the following 

measures: (1) subjective measures, (2) vehicle-based measures, (3) behavioral measures 

and (4) physiological measures. A detailed review on these measures as to the sensors 

used, advantages and limitations associated with each measure is provided. The 

different ways in which drowsiness and inattention has been experimentally 

manipulated is also discussed. ECG and EMG signals are less intrusive as compared to 

other physiological signals and provide true state of the driver. Drowsiness has been 

manipulated by allowing the driver to drive monotonously at a limited speed for long 

hours and inattention was manipulated by asking the driver to respond to phone calls 

and short messaging services. A total of 15 male subjects participated in the data 

collection process and drove for two hours in a simulated environment, at three 

different times of the day (00:00 – 02:00 hours, 03:00 – 05:00 hours and 15:00 – 17:00 

hours) when their circadian rhythm is low. ECG and EMG signals along with the video 

recording have been collected throughout the experiment. The gathered physiological 

signals were preprocessed to remove noise and artifacts. The hypovigilance features 

were extracted from the preprocessed signals using conventional statistical, higher 

order statistical and higher order spectral features. Statistically significant differences 

were observed between the alert, drowsy and inattentive states in both the physiological 

signals. The features were classified using k nearest neighbor, linear discriminant 

analysis and quadratic discriminant analysis. The energy feature of ECG signals gave a 

maximum accuracy of 93.35 %. The bispectral features gave an overall maximum 

accuracy of 96.75 % and 92.31 % for ECG and EMG signals respectively using k fold 

validation. The features of ECG and EMG signals were fused using principal 

component analysis to obtain the optimally combined features and the classification 

accuracy was 96%. In case of drowsiness, the driver has to be alerted on time. Hence, 

the different stages of drowsiness were classified with an overall accuracy of 71 %. 

Alerting the driver during initial stage of drowsiness would minimize accidents.  In the 

future, the performance of hypovigilance detection system can be enhanced my 

merging these physiological measures with behavioral measures and vehicle based 

measures. A hybrid drowsiness detection system that combines non-intrusive 

physiological measures with other measures would accurately determine the drowsiness 

level of a driver. A number of road accidents can be avoided if an alert is sent to a 

driver who is drowsy or inattentive. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 Background 

According to available statistical data, over 1.3 million people die each year on 

the road and 20 to 50 million people suffer non-fatal injuries due to road accidents 

(WHO, 2009). Based on police reports, the US National Highway Traffic Safety 

Administration (NHTSA) conservatively estimated that a total of 100000 vehicle 

crashes each year are the direct result of driver drowsiness. These crashes have resulted 

in approximately 1550 deaths, 71000 injuries and $12.5 billion in monetary losses 

(Rau, 2005). In the year 2009, the US National Sleep Foundation (NSF) reported that 

54% of adult drivers have driven a vehicle while feeling drowsy and 28% of them 

actually fell asleep (NSF, 2010). The German Road Safety Council (DVR) claims that 

one in four highway traffic fatalities are a result of momentary driver drowsiness 

(Fraunhofer-Gesellschaft, 2010). These statistics suggest that driver drowsiness is one 

of the main concerns worldwide that need to be addressed. 

Similar to driver drowsiness, statistics of driver inattention reveals the 

seriousness of the need for driver hypovigilance system. In the year 2008, NHTSA 

estimated 5870 deaths, 350,000 injuries and 745,000 property damages due to driver 

distraction (NHTSA, 2009). In US alone, damages of $43 billion per year have been 
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estimated due to cell phone related crashes (Cohen & Graham, 2003). A naturalistic 

driving study found that 78% of crashes and 65% of near-crashes included inattention 

as a major contributing factor (Klauer et al., 2006). According to United Nations 

Economic and Social Commission for Asia and the Pacific (UNESCAP), around 1 

million deaths, 23 million injuries and 10 million vehicles are exposed to the road 

accidents in ESCAP region per year. They conclude that more than 85% of the 

causalities due to road accidents are from the developing countries (UNESCAP, 2009).  

Road accidents have become one of the top ten major factors of deaths in 

Malaysia. In the year 2008, the Royal Malaysian Police reported that, traffic accidents 

in Malaysia have been increasing at the average rate of 9.7% per annum over the last 

three decades (Abdullah & Zamri, 2010). Malaysian Institute of Road Safety (MIROS) 

in its statistics has found that in the year 2008, the country has recorded losses of RM 

7.8 billion due to road accidents (Bernama, 2010). Driver hypovigilance, being one of 

the most prevalent reasons for road accident, needs to be addressed in order to prevent 

accidents and to ensure safe travel. The symptoms of driver hypovigilance have to be 

detected early enough and the driver has to be alerted accordingly, to avert an accident.   

1.2 Problem statement and its significance 

This thesis addresses the problem of driver hypovigilance (driver drowsiness and 

driver inattention) using physiological signals. Researchers have attempted to 

determine driver hypovigilance using the following measures:  
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1. Vehicle-based measures - A number of metrics, depending on vehicle 

movements, are constantly monitored while driving. This includes deviations 

from lane position, movement of the steering wheel, pressure on the 

acceleration pedal, etc.  Any change in metrics that crosses a specified threshold 

indicates a significantly increased probability that the driver is drowsy or 

inattentive (Forsman et al., 2012; C. C. Liu et al., 2009). 

2. Behavioral measures - The behavior of the driver such as yawning, eye closure, 

eye blinking, head pose, etc., is monitored through a camera and the driver is 

alerted if any hypovigilance symptoms are detected (Xiao et al., 2009; Yin et 

al., 2009; Zhang & Zhang, 2010). 

3. Physiological measures - The correlation between physiological signals and 

driver hypovigilance has been studied by many researchers using signals such 

as electrocardiogram (ECG), electromyogram (EMG), electrooculogram (EoG) 

and electroencephalogram (EEG) (Akin et al., 2008; Guosheng et al., 2010; 

Khushaba et al., 2011; Kokonozi et al., 2008; W. Liang et al., 2009).  

Each of these methods used for detecting hypovigilance has its own advantages 

and limitations. Vehicle-based measures are useful in measuring drowsiness when a 

lack of vigilance affects vehicle control or deviation. However, researchers have 

identified cases where there is no impact on vehicle-based parameters when the driver 

were drowsy (Ingre et al., 2006). This makes a vehicle-based drowsiness detection 

system unreliable. Behavioral measures are an efficient way to detect drowsiness and 

some real-time products have been developed (Lawrence Barr et al., 2009). However, 

when evaluating the available real-time detection systems, Lawrence et al. observed 
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that different illumination conditions affect the reliability and accuracy of the 

measurements (Lawrence Barr, et al., 2009). Physiological measures are reliable and 

accurate because they provide the true internal state of the driver. However attaching 

sensors to the body is intrusive. To reduce the intrusiveness, lesser number of sensors 

has to be used. Among all physiological parameters investigated, ECG and EMG can 

be measured using lesser number of sensors. EEG signals require 8 to 64 electrodes to 

be placed on the scalp which is intrusive. Similarly the electrodes used for measuring 

EoG signals are placed near the eye which can hinder driving. Non-obtrusive 

physiological sensors such as wearable sensors are expected to become feasible in the 

near future (B.-G. Lee & Chung, 2012; Sloten et al., 2009). The advantages of 

physiological measures and the increasing availability of non-intrusive measurement 

equipment paves way to explore the possibility of discriminating drowsy, inattentive 

and alert states from less intrusive physiological signals.  

1.3 Research philosophy 

In this thesis a few issues pertaining to hypovigilance has been addressed: First, it 

has to be understood if ECG and sEMG signals are reliable to detect hypovigilance. If 

the first hypothesis is true, the second goal is to probe into the signal and identify 

features that are indicative of hypovigilance. In real time applications, the symptoms of 

hypovigilance need to be detected to alert the driver on time before any tragedy or 

accident happens. Hence the next goal is to understand the different stages of 

hypovigilance from ECG signals. Using only one physiological signal may tend to 

provide unreliable results. Merging two signals may help the system to perform better. 
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So the final goal is to fuse the features of ECG and sEMG signals and observe if there 

is significant difference in the classification accuracy.  

1.4 Research objectives 

Our thesis focusses on detecting hypovigilance which includes both drowsiness and 

inattention using ECG and EMG signals. The objectives are explained below: 

Objective 1: To develop a database of physiological signals (ECG & EMG) for driver 

hypovigilance research 

 To develop an efficient hypovigilance detection system, reliable data is needed. 

Capturing spontaneous hypovigilance, especially drowsiness behavior is a challenging 

and laborious task because the driver has to be made sleepy. Researchers have observed 

that driver drowsiness mainly depends on the circadian rhythm (time of day) when the 

vigilance level is low (00:00 – 02:00 hrs; 03:00 – 05:00 hrs and 15:00 – 17:00 hrs) and 

the increase in the duration of the driving task (Ingre, et al., 2006; Kokonozi, et al., 

2008; Vitaterna et al., 2001). It was also observed that, the possibility of getting drowsy 

is lesser during the other times of the day. 

Hence for this work, a hypovigilance database comprising ECG signals, sEMG 

signals and video recording during drowsiness and inattention was created. This is 

mainly done because of the lack of dataset for the research community currently. The 

most challenging task in getting reliable data is to make the subjects fall asleep while 

driving. It is not safe to make drivers fall asleep on wheels due to safety reasons. So in 

this experiment, the subjects were asked to drive for two hours in a simulated 

 
 

 
 

 
 

 
©

 T
his 

ite
m

 is
 p

ro
te

ct
ed b

y o
rig

in
al

 co
pyr

igh
t 


