

DESIGN AND DEVELOPMENT OF AN INTELLIGENT HEARING ABILITY LEVEL ASSESSMENT SYSTEM USING SOMATOSENSORY STIMULI

KAMALRAJ SUBRAMANIAM 1040610532

by

A thesis submitted In fulfillment of the requirements for the degree of Doctor of Philosophy

School of Mechatronic Engineering UNIVERSITI MALAYSIA PERLIS

2014

ACKNOWLEGEMENT

First and foremost, I would like to express my sincere thanks to the Vice Chancellor of Universiti Malaysia Perlis, Brigedier Jeneral Dato Professor Dr. Kamarudin Hussin for his constant encouragement and facilities provided at the university for the completion of this research work.

I would like to express my sincere gratitude to my advisor and mentor Professor Dr. Paulraj M P for the continuous support of my Ph.D study and research, for his patience, persistence, visualization, and immense knowledge. During the research, Prof Paul style of guidance had made me to gain knowledge on many aspects; Prof Paul will not give you answers for your research problems instead he will put you on a path to seek answers. I have been fortunate to have a supervisor who gave me the opportunity to develop my individuality and self-sufficiency during the study. I am indebted to him for sharing his vast knowledge and experience with me and for teaching me to write research papers. I am happy to say that one could not wish for a better or friendlier supervisor.

I would also like to extend my warmest gratitude to my second supervisor Professor Dr. Sazali Bin Yaccob for his motivational words, understanding and caring advices, convictions, and making me to realize my true potential. I extend my boundless appreciation to Prof Sazali for establishing the joint collaboration between UniMAP and Otolaryngology Department, Hospital Tuanku Fauziah, Perlis, from which my research work have been greatly benefitted.

I am also very grateful to my third supervisor Professor Dr. Abdul Hamid Bin Adom for his support and facilities provided at the school, for the completion of this work. I thank him for constantly encouraging me to complete this research work.

ii

I also very grateful to Dr. Amirozi Bin Ahmed, Head of Otolaryngology Department, Hospital Tuanku Fauziah, Perlis, Malaysia, for his generous contributions of data inspection, fruitful suggestions, advices, and for sharing knowledge.

I wish to thank the Malaysian Ministry of Higher Education for providing the research grant: 9003-00278 under the Fundamental Research Grant Scheme (FRGS), which funded this research work. I also extend my sincere thanks to UniMAP for providing a financial support through a Graduate Assistantship.

I also would like to express my thanks to my close friends Mr. Sanjeev Kumar Nataraj, Mr. Divakar Purushothaman, Mr. Allan Melvin, Mr. Sathees Kumar Nataraj, Mr. Jeevan and Mr. Yogesh Chinnakalai for their friendly advices and encouraging words during this research work.

Finally, I owe my sincere thanks to my father Mr. P. Subramaniam, my mother Mrs. S. Santhamani, my brother Bharathraj Subramaniam for their unconditional love and support that motivates me to set higher targets.

Last but not least, I thank the Almighty for blessing me to successfully complete this research work.

To my beloved Professor Balasubramaniam & S and Professor Lakshmi Narayanan K who had given dreams to look forward to

UNIVERSITI MALAYSIA PERLIS

	DECLARATION OF	THESIS	
Author's full name	: KAMALRAJ SUBRAMANIAM		
Date of birth	: 11.06.1986		
Title	: DESIGN AND DEVELOPMENT OF A	AN INTELLIGENT HEARING ABILITY	
	LEVEL ASSESSMENT SYSTEM USI	NG SOMATOSENSORY STIMULI	
Academic Session	: 2013 - 2014	ilen't	
I hereby declare that the	thesis becomes the property of Universiti M	alaysia Perlis (UniMAP) and to be placed at the library	
of UniMAP. This thesis i	s classified as :		
CONFIDENTL	AL (Contains confidential information	n under the Official Secret Act 1972)*	
RESTRICTED	(Contains restricted information a	as specified by the organization where	
research was done)*			
OPEN ACCESS I agree that my thesis is to be made immediately available as hardcopy or on-line open access (full text)			
I, the author, give permi	ssion to the UniMAP to reproduce this the	esis in whole or in part for the purpose of research or	
academic exchange only	(except during a period of years, if so	requested above).	
OTHIS		Certified by:	
SIGNA	TURE	SIGNATURE OF SUPERVISOR	
F 9331	228	PROF DR. PAULRAJ M P	
(NEW IC NO. /	PASSPORT NO.)	NAME OF SUPERVISOR	
Date:		Date :	

NOTES : * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentially or restriction.

TABLE OF CONTENTS

THE	SIS DECI	LARATION	i
ACK	NOWLEI	DGEMENT	ii
TAB	LE OF CO	ONTENTS	v
LIST	C OF TAB	LES	xii
LIST	C OF FIGU	JRES	XV
LIST	C OF ABB	REVIATIONS	xx
LIST	C OF SYM	BOLS	xxii
ABS	TRAK	igillo	xxiv
ABS	TRACT	URES REVIATIONS BOLS INTRODUCTION	XXV
CHA	APTER I	INTRODUCTION	
	1.1	Research Background	1
	1.2	Design of an Intelligent Hearing Ability Assessment System	3
	1.3	Problem Statement	4
	1.4	Research Objectives	5
K	1.5	Scope of Thesis	7
\bigcirc	1.6	Organization of Thesis	8
CHA	PTER 2	LITERATURE REVIEW	
	2.1	Introduction	10
	2.2	Human Auditory System	11
	2.3	Electroencephalogram	14
		2.3.1 Auditory Evoked Potential	14

	2.4	AEP Stin	mulus Effects	17
		2.4.1	AEP Stimulus Type and Duration	18
		2.4.2	Interstimulus Interval	21
		2.4.3	Effect of Stimulus Intensity and Frequency on AEP	21
	2.5	Develop	oment of Hearing Threshold Detection from AEP	23
		2.5.1	AEP Signal Detection and Analysis	23
		2.5.2	Hearing Threshold Criterion	24
		2.5.3	Hearing Threshold Response	25
		2.5.4	Complete Characteristic AEP Measurement	27
	2.6	Feature	Extraction	29
		2.6.1	Parametric Modeling Techniques	30
		2.6.2	Non-Parametric Modeling Techniques	31
		, Qr	2.6.2.1 Time Domain Features	32
		012	2.6.2.2 Frequency Domain Features	32
	·SYC	•	2.6.2.3 Time-Frequency Domain Features	33
	(N)	2.6.3	Fractional Dimension	33
\bigcirc	2.7	Classific	ation of AEP	34
		2.7.1	ABR Classification Using Statistical Automation Methods	35
		2.7.2	ABR Classification Using Syntactic Methods	36
		2.7.3	ABR Classification Using Machine Learning Algorithms	36
	2.8	Summar	У	42

CHAPTER 3 RESEARCH METHODOLOGY

	3.1	Introduction	43
	3.2	Aims of the Research	43
	3.3	Research Design	44
	3.4	Establishing Reliability and Validity of the Data	45
	3.5	Participants Selection Criteria	47
		3.5.1 Participant Selection Material and Apparatus	48
		3.5.2 Procedure for Participant Selection using Audiometry	50
		3.5.2.1 Participant Selection Procedure	52
		3.5.3 Description of Participants	54
		3.5.3.1 Normal Hearing Group	54
		3.5.3.2 Abnormal Hearing Group	58
	3.6	Research Material and Apparatus For Measuring AEP	61
	· · · · · · · · · · · · · · · · · · ·	3.6.1 EEG Amplifier For AEP Data Acquisition	62
		3.6.2 Stimulus and Recording Parameters	64
	3.7	Data Collection Procedures	64
\bigcirc		3.7.1 Procedure for AEP Data Acquisition Protocol	65
		3.7.1.1 Data Acquisition Protocol For AEP-HTR	65
		3.7.1.2 Data Acquisition Protocol For AEP-HPR	69
	3.8	AEP Database Formulation	71
	3.9	Data Validation Using ANOVA Test	72
	3.10	Summary	75

CHAPTER 4 FEATURE EXTRACTION ALGORITHMS FOR HEARING RESPONSE CLASSIFICATION

	4.1	Introduc	tion		76
	4.2	Feature Extraction Methods		76	
	4.3	Parametr	ric Modeli	ng Feature Extraction	77
		4.3.1	AR Mod	lel	78
		4.3.2	Akaike l	Information Criterion	79
		4.3.3	AR Pole	-Tracking Feature Extraction Algorithm	84
	4.4	Non-Par	ametric M	odeling Feature Extraction	86
		4.4.1	AEP Pre	e-processing Method	87
		4.4.2	Segment	tation and Overlapping	87
		4.4.3	Filtering	Using Custom Filters	88
	4.5	Frequen	cy Domair	n Features	89
	- C	4.5.1	Spectral	Energy Feature	89
	(hisiter		4.5.1.1	Feature Extraction Algorithm for Spectral Energy	91
	ILIIS	4.5.2	Spectral	Entropy Feature	94
\bigcirc			4.5.2.1	Feature Extraction Algorithm for Spectral Entropy	96
		4.5.3	Spectral	Energy-Entropy Feature	98
			4.5.3.1	Feature Extraction Algorithm for Spectral Energy-Entropy	100
	4.6	Fraction	al Dimens	ion Feature	102
		4.6.1	Box-cou	nting Method	103
			4.6.1.1	Feature Extraction Algorithm Using Box- counting Method	104

		4.6.2	Higuchi M	lethod	105
				Feature Extraction Algorithm Using Higuchi Method	107
		4.6.3		Fluctuation Analysis Method	108
				Feature Extraction Algorithm Using Detrended Fluctuation Analysis Method	110
	4.7	Summary	7		111
CHA	APTER 5	CLASSI RESPON		ALGORITHMS FOR AEP HEARING	
	5.1	Introduct	ion	sinal copyris	112
	5.2	Choice o	f Classifiers		113
		5.2.1	Static Neu	ral Networks	114
		5.2.2	Dynamic I	Neural Networks	116
	5.3	Designin	g Neural Ne	etwork Architecture	117
		5.3.1	Training o	f Neural Networks	117
	5.4	Particle S	Swarm Optin	mization Algorithm	119
	5.5	Performa	nce of a Cla	assifier	122
	5.6	Summary	/		124
CHA	APTER 6	HEARI		N OF AEP HOLD RESPONSE USING ODELING TECHNIQUES	
	6.1	Introduct	ion		125
	6.2		on of AEP H Il Participan	learing Stability Factors for Normal and ts	125
	6.3	Effects o	f Hearing F	requency on Hearing Threshold Detection	151
	6.4	Summary	/		155

CHAPTER 7 RESULTS AND DISCUSSION

	7.1	Introduct	ion	156
	7.2	Classifica	ation of AEP-HTR using MFNN, ENN and PSONN	156
		7.2.1	MFNN Classifier for AEP-HTR	157
		7.2.2	ENN Classifier for AEP-HTR	165
		7.2.3	PSONN Classifier for AEP-HTR	173
		7.2.4	Discussion	180
	7.3	Fractal For PSONN	eature Classification of AEP-HTR using MFNN, ENN and	181
		7.3.1	MFNN Classifier for AEP-HTR	182
		7.3.2	ENN Classifier for AEP-HTR	186
		7.3.3	PSONN Classifier for AEP-HTR	190
		7.3.4	Discussion	195
	7.4		ation of AEP-HPR using MFNN, ENN and PSONN	197
	inisiter	7.4.1	MFNN Classifier for AEP-HPR	197
	NISIC	7.4.2	ENN classifier for AEP-HPR	207
\bigcirc		7.4.3	PSONN classifier for AEP-HPR	215
		7.4.4	Discussion	222
	7.5	Fractal For PSONN	eature Classification of AEP-HPR using MFNN, ENN and	224
		7.5.1	MFNN Classifier for AEP-HPR	224
		7.5.2	ENN Classifier for AEP-HPR	228
		7.5.3	PSONN Classifier for AEP-HPR	232
		7.5.4	Discussion	235

7.6	Summary	237
CHAPTER 8	CONCLUSION	
8.1	Introduction	239
8.2	Designing a Two-class Intelligent hearing Ability Level Assessment System	239
8.3	Designing a Five-class Intelligent Hearing Ability Level Assessment System Future Work	242
8.4	Future Work	244
REFERENCES		245
APPENDIX A	(1 ¹ C)	254
APPENDIX B	101	255
APPENDIX C	xe ^O	258
APPENDIX D		262
APPENDIX E	.59	280
APPENDIX F		283
APPENDIX G		301
LIST OF PUBI	LICATIONS	304

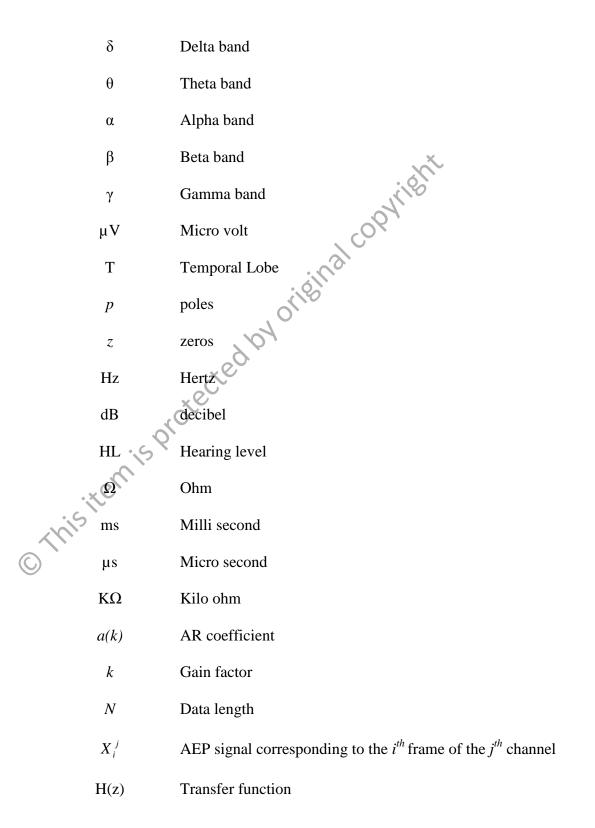
LIST OF ABBREVIATIONS

	AABR	Automated Auditory Brainstem Response
	AAEP	Automated Auditory Evoked Potential
	ABHS	Abnormal Hearing Subject
	ABR	Auditory Brainstem Response
	AEP	Auditory Evoked Potential
	AHG	Abnormal Hearing Group
	ANOVA	Analysis of Variance
	AR	Auto Regressive
	ARMA	Autoregressive Moving Average
	ARX	Autoregressive model with an Exogenous Input
	ASHA	American Speech Hearing Association
	BAEP	Brainstem Auditory Evoked Potential
	BFF	Box-eounting Fractal Feature
	BP	Backpropagation
	BM CA DFA DFFF EEG	Box-counting Method
	CA	Classification Accuracy
	DFA O	Detrended Fluctuation Analysis
	DFFF	Detrended Fluctuation Fractal Feature
	EEG	Electroencephalography
	ENN	Elman Neural Network
	EP	Evoked Potential
\bigcirc	ERP	Event Related Potentials
	FD	Fractal Dimension
	FFT	Fast Fourier Transform
	HTR	Hearing Threshold Response
	HPR	Hearing Perception Response
	HFF	Higuchi Fractal Feature
	HM	Higuchi Method
	HL	Hearing-threshold Lower
	HU	Hearing-threshold Upper
	HPL	Hearing Perception Level
	ISEF	Independent Spectral Energy Feature

	ISENF	Independent Spectral Entropy Feature
	ISEENF	Independent Spectral Energy Entropy Feature
	ISI	Inter Stimulus Interval
	ICA	Individual Classification Accuracy
	LLAEP	Long Latency Auditory Evoked Potential
	MFNN	Multilayer Feedforward Neural Network
	MLAEP	Middle Latency Auditory Evoked Potential
	MMN	Mismatch Negativity
	MA	Moving Average
	NHG	Normal Hearing Group
	NHS	Normal Hearing Subject
	NN	Neural Network
	PSO	Particle Swarm Optimization
	PSONN	Particle Swarm Optimization Neural Network
	SBC	Spectral Band Combination
	SBCEF	Spectral Band Combination Energy Feature
	SBCENF	Spectral Band Combination Entropy Feature
	SBCEF SBCENF SD SPL SNR	Spectral Band Combination Energy Entropy Feature
	SD 5	Standard Deviation
	SPL	Sound Pressure Level
	SNR	Signal to Noise Ratio
	STFT	Short Time Fourier Transform
\bigcirc	TEAOE	Transient Evoked Oto-acoustic Emissions
	VEP	Visually Evoked Potentials
	WT	Wavelet Transform

	NO.	LIST OF FIGURES	PAGE
	1.1	Block diagram of an intelligent hearing ability level assessment system	4
	2.1	Structure of the ear	12
	2.2	A sound stimulus passes through auditory pathways in the brain	13
	2.3	Different types of auditory evoked potential signals	15
	3.1	Experimental setup for behavioral audiometry screening test	50
	3.2	A flowchart: Participant selection using audiometry system	51
	3.3	Audiometric test results for NHG	57
	3.4	Audiometric test results for AHG	60
	3.5	Experimental setup for AEP system	62
	3.6	Electrode position from International 10-20 Standard	63
	3.7	Procedure for AEP-HTR protocol flowchart	67
	3.8	Procedure for AEP-HPR protocol flowchart	70
	4.1	Block diagram of parametric and non-parametric features	77
	4.25	Plot on the <i>z</i> -plane of the poles for 10 normal hearing participants (Electrode location: T3, left ear)	80
\bigcirc	4.3	Plot on the <i>z</i> -plane of the poles for 10 normal hearing participants (Electrode location: T3, right ear)	81
	4.4	Plot on the <i>z</i> -plane of the poles for 10 abnormal hearing subjects (Electrode location: T3, left ear)	81
	4.5	Plot on the <i>z</i> -plane of the poles for 10 abnormal hearing subjects (Electrode location: T3, right ear)	82
	4.6	Block description of the AR pole-tracking algorithm	83
	4.7	A flowchart of Procedure for non-parametric feature extraction algorithms	86
	5.1	Block diagram of a typical signal classification system	112

	5.2	A static feedforward neural network	115
	5.3	A dynamic feedback neural network	116
	5.4	A flowchart for training the ENN using PSO algorithm	122
	6.1	Plot on the <i>z</i> -plane of the poles from a normal hearing participant (Hearing frequency: 500 Hz, Electrode location: T3, left ear)	126
	6.2	Plot on the <i>z</i> -plane of the poles from a normal hearing participant (Hearing frequency: 500 Hz, Electrode location: T3, right ear)	127
	6.3	Plot on the <i>z</i> -plane of the poles from an abnormal hearing participant (Hearing frequency: 500 Hz, Electrode location: T3, left ear)	127
	6.4	Plot on the <i>z</i> -plane of the poles from an abnormal hearing participant (Hearing frequency: 500 Hz, Electrode location: T3, right ear)	128
	6.5	Box plot for the hearing-threshold values of normal and abnormal hearing participants (Hearing frequency: 500 Hz, left ear)	130
	6.6	Box plot for the hearing-threshold values of normal and abnormal hearing participants (Hearing frequency: 500 Hz, right ear)	131
	6.7	Plot on the <i>z</i> -plane of the poles from a normal hearing participant (Hearing frequency: 1000 Hz, Electrode location: T3, left ear)	132
	6.8	Plot on the <i>z</i> -plane of the poles from a normal hearing participant (Hearing frequency: 1000 Hz, Electrode location: T3, right ear)	133
× C	6.9	Plot on the <i>z</i> -plane of the poles from an abnormal hearing participant (Hearing frequency: 1000 Hz, Electrode location: T3, left ear)	133
	6.10	Plot on the <i>z</i> -plane of the poles from an abnormal hearing participant (Hearing frequency: 1000 Hz, Electrode location: T3, right ear)	134
	6.11	Box plot for the hearing-threshold values of normal and abnormal hearing participants (Hearing frequency: 1000 Hz, left ear)	136
	6.12	Box plot for the hearing-threshold values of normal and abnormal hearing participants (Hearing frequency: 1000 Hz, right ear)	137
	6.13	Plot on the <i>z</i> -plane of the poles from a normal hearing participant (Hearing frequency: 2000 Hz, Electrode location: T3, left ear)	138


	6.14	Plot on the <i>z</i> -plane of the poles from a normal hearing participant (Hearing frequency: 2000 Hz, Electrode location: T3, left ear)	139
	6.15	Plot on the <i>z</i> -plane of the poles from an abnormal hearing participant (Hearing frequency: 2000 Hz, Electrode location: T3, left ear)	139
	6.16	Plot on the <i>z</i> -plane of the poles from an abnormal hearing participant (Hearing frequency: 2000 Hz, Electrode location: T3, right ear)	140
	6.17	Box plot for the hearing-threshold values of normal and abnormal hearing participants (Hearing frequency: 2000 Hz, left ear)	142
	6.18	Box plot for the hearing-threshold values of normal and abnormal hearing participants (Hearing frequency: 2000 Hz, right ear)	143
	6.19	Plot on the <i>z</i> -plane of the poles from a normal hearing participant (Hearing frequency: 4000 Hz, Electrode location: T3, left ear)	144
	6.20	Plot on the <i>z</i> -plane of the poles from a normal hearing participant (Hearing frequency: 4000 Hz, Electrode location: T3, right ear)	145
	6.21	Plot on the <i>z</i> -plane of the poles from an abnormal hearing participant (Hearing frequency: 4000 Hz, Electrode location: T3, left ear)	145
	6.22	Plot on the <i>z</i> -plane of the poles from an abnormal hearing participant (Hearing frequency: 4000 Hz, Electrode location: T3, right ear)	146
X	6.23	Box plot for the hearing-threshold values of normal and abnormal hearing participants (Hearing frequency: 4000 Hz, left ear)	148
	6.24	Box plot for the hearing-threshold values of normal and abnormal hearing participants (Hearing frequency: 4000 Hz, right ear)	149
	6.25	Mean HL values for normal and abnormal hearing participants	153
	6.26	Mean HU values for normal and abnormal hearing participants	153
	7.1	Comparison of mean classification accuracy for MFNN models for left ear (ISEF, ISENF and ISEENF)	163
	7.2	Comparison of mean classification accuracy for MFNN models for right ear (ISEF, ISENF and ISEENF)	164
	7.3	Comparison of mean classification accuracy for MFNN models for left ear (SBCEF, SBCENF and SBCEENF)	164

	7.4	Comparison of mean classification accuracy for MFNN models for right ear (SBCEF, SBCENF and SBCEENF)	165
	7.5	Comparison of mean classification accuracy for ENN models for left ear (ISEF, ISENF and ISEENF)	171
	7.6	Comparison of mean classification accuracy for ENN models for right ear (ISEF, ISENF and ISEENF)	171
	7.7	Comparison of mean classification accuracy for ENN models for left ear (SBCEF, SBCENF and SBCEENF)	172
	7.8	Comparison of mean classification accuracy for ENN models for right ear (SBCEF, SBCENF and SBCEENF)	172
	7.9	Comparison of mean classification accuracy for PSONN models for left ear (ISEF, ISENF and ISEENF)	178
	7.10	Comparison of mean classification accuracy for PSONN models for right ear (ISEF, ISENF and ISEENF)	178
	7.11	Comparison of mean classification accuracy for PSONN models for left ear (SBCEF, SBCENF and SBCEENF)	179
	7.12	Comparison of mean classification accuracy for PSONN models for right ear (SBCEF, SBCENF and SBCEENF)	179
	7.13	Comparison of classification accuracy for MFNN models for left ear (BFF, HFF and DFFF)	185
	7:14	Comparison of classification accuracy for MFNN models for right ear (BFF, HFF and DFFF)	186
0	7.15	Comparison of classification accuracy for ENN models for left ear (BFF, HFF and DFFF)	189
	7.16	Comparison of classification accuracy for ENN models for right ear (BFF, HFF and DFFF)	190
	7.17	Comparison of classification accuracy for PSONN models for left ear (BFF, HFF and DFFF)	194
	7.18	Comparison of classification accuracy for PSONN models for right ear (BFF, HFF and DFFF)	194
	7.19	Comparison of mean classification accuracy for MFNN models for left ear (ISEF, ISENF and ISEENF)	204

	7.20	Comparison of mean classification accuracy for MFNN models for right ear (ISEF, ISENF and ISEENF)	205
	7.21	Comparison of mean classification accuracy for MFNN models for left ear (SBCEF, SBCENF and SBCEENF)	205
	7.22	Comparison of mean classification accuracy for MFNN models for right ear (SBCEF, SBCENF and SBCEENF)	206
	7.23	Comparison of mean classification accuracy for ENN models for left ear (ISEF, ISENF and ISEENF)	212
	7.24	Comparison of mean classification accuracy for ENN models for right ear (ISEF, ISENF and ISEENF)	213
	7.25	Comparison of mean classification accuracy for ENN models for left ear (SBCEF, SBCENF and SBCEENF)	213
	7.26	Comparison of mean classification accuracy for ENN models for right ear (SBCEF, SBCENF and SBCEENF)	214
	7.27	Comparison of mean classification accuracy for PSONN models for left ear (ISEF, ISENF and ISEENF)	220
	7.28	Comparison of mean classification accuracy for PSONN models for right ear (ISEF, ISENF and ISEENF)	221
	7.29	Comparison of mean classification accuracy for PSONN models for left ear (SBCEF, SBCENF and SBCEENF)	221
	7.30	Comparison of mean classification accuracy for PSONN models for right ear (SBCEF, SBCENF and SBCEENF)	222
\bigcirc	7.31	Comparison of classification accuracy for MFNN models for left ear (BFF, HFF and DFFF)	227
	7.32	Comparison of classification accuracy for MFNN models for right ear (BFF, HFF and DFFF)	228
	7.33	Comparison of classification accuracy for ENN models for left ear (BFF, HFF and DFFF)	231
	7.34	Comparison of classification accuracy for ENN models for right ear (BFF, HFF and DFFF)	231
	7.35	Comparison of classification accuracy for PSONN models for left ear (BFF, HFF and DFFF)	234
	7.36	Comparison of classification accuracy for PSONN models for right ear (BFF, HFF and DFFF)	235

o this item is protected by original copyright

LIST OF SYMBOLS

Xn_i^c	Normalized data value
X_i^c	data to be normalized
X_{\min}	Minimum value
$X_{ m max}$	Maximum value
d(z)	Characteristic equation
<i>p</i> , <i>q</i>	real roots, pair of complex roots
$M_{ m max}$, $M_{ m min}$	Maximum and Minimum magnitude of the roots
H_u, H_l	Upper and Lower hearing threshold factors
X_{i}	<i>i</i> th Swarm particle
V_i	Velocity of <i>i</i> th swarm particle
P_i	Best previous location of i^{th} swarm particle
P _g	Best global location of i^{th} swarm particle
.xell	
P _s spr	

NO.	LIST OF TABLES	PAGE
2.1	Summary of AEP recording parameters	21
2.2	Summary of reviewed AEP studies	39
3.1	Participant selection criteria for groups of participants	48
3.2	Participant selection apparatus for groups of participants	49
3.3	Group with normal hearing for the left ear ($n = 24$): Average hearing threshold level (dBHL)	55
3.4	Group with normal hearing for the right ear $(n = 24)$: Average hearing threshold level (dBHL)	56
3.5	Group with abnormal hearing for the left ear $(n = 5)$:Average hearing threshold level (dBHL)	58
3.6	Group with abnormal hearing for the right ear $(n = 5)$: Average hearing threshold level (dBHL)	59
3.7	Apparatus used for AEP data acquisition	61
3.8	Stimulus recording parameters for behavioral threshold and AEP threshold estimation	64
3.9	Anova test results for NHG	74
3.10	Anova test results for AHG	74
4.1	Spectral band combination feature set	100
5.1	A Typical Confusion matrix	122
6.1	Hearing-threshold factors for normal and abnormal hearing participants (500 Hz)	129
6.2	Hearing-threshold factors for normal and abnormal hearing participants (1000 Hz)	135
6.3	Hearing-threshold factors for normal and abnormal hearing participants (2000 Hz)	141
6.4	Hearing-threshold factors for normal and abnormal hearing participants (4000 Hz)	147
7.1	Spectral band combination features (AEP-HTR)	158

7.2	Comparison of MFNN architecture for gamma band feature (AEP-HTR)	159
7.3	Comparison of MFNN architecture for SBC2 feature (AEP-HTR)	160
7.4	Comparison of MFNN architecture for SBC3 feature (AEP-HTR)	161
7.5	Comparison of mean classification accuracy for MFNN models (AEP-HTR)	162
7.6	Comparison of ENN architecture for gamma band feature (AEP-HTR)	167
7.7	Comparison of ENN architecture for SBC2 feature (AEP-HTR)	168
7.8	Comparison of ENN architecture for SBC3 feature (AEP-HTR)	168
7.9	Comparison of mean classification accuracy for ENN models (AEP-HTR)	169
7.10	Comparison of PSONN architecture for gamma band feature (AEP-HTR)	174
7.11	Comparison of PSONN architecture for SBC2 feature (AEP-HTR)	175
7.12	Comparison of PSONN architecture for SBC3 feature (AEP-HTR)	175
7.13	Comparison of mean classification accuracy for PSONN models (AEP-HTR)	176
7.14	Significance of gamma band, SBC2 ($\beta\gamma$) and SBC3 ($\alpha\beta\gamma$)	180
7.15	Comparison of MFNN architecture for fractal feature (AEP-HTR)	183
© 7.16	Comparison of classification accuracy for MFNN models (AEP-HTR)	184
7.17	Comparison of ENN architecture for fractal feature (AEP-HTR)	187
7.18	Comparison of classification accuracy for ENN models (AEP-HTR)	188
7.19	Comparison of PSONN architecture for fractal feature (AEP-HTR)	191
7.20	Comparison of classification accuracy for PSONN models (AEP-HTR)	192
7.21	Significance of fractal feature	196
7.22	Spectral band combination features (AEP-HPR)	199