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BIOSENSOR UNTUK MENGUKUR POTENSI TUMBUH-TUMBUHAN 

PERUBATAN SEBAGAI ANTI DIABETIS   

 

ABSTRAK 

Tiga alternatif tekniks elektro-enzim tekniks telah dibangunkan untuk mengukur potensi 
tumbuh-tumbuhan perubatan sebagai antidiabitis.  Ketiga-tiga teknik tersebut adalah 
berdasarkan kepada perencatan enzim alfa glucosidase (AG) di dalam pertukaran para-
nitrofinil –alfa-D-glukopiranosaid (PNPG) kepada para-nitrofenol (PNP) yang 
dimangkinkan  oleh enzim AG. Teknik yang pertama, pes elektrod tiub nano karbon 
pelbagai dinding (MWCNTs) adalah terdiri daripada campuran seragam serbuk 
MWCNTs dan minyak mineral di dalam nisbah 60:40 dan telah digunakan bersama  
dengan enzim bebas dan larutan PNPG. Technik yang kedua, elektrod skrin tercetak 
tiub nano karbon (SP-CNTs) adalah berdasarkan kepada elektrod skrin tercetak (SPE) 
komersial dan telah digunakan bersama dengan enzim bebas dan larutan PNPG. Teknik 
yang ketiga, biosensor pakai buang, adalah berdasarkan kepada elektrod pertama dan 
kedua di mana enzim AG telah dipegun (immobilized) secara kovalen ke atas amina 
terfungsi tiub nano karbon pelbagai dinding (MWCNTs-NH2) diikuti dengan 
pemerangkapan PNPG sebagai substrat dengan menggunakan poly(vinil alcohol) (PVA) 
terawat secara pembekuan-nyahbekuan ke atas SP-CNTs. PNPG telah diperangkap pada 
pH  yang rendah untuk mengelakkan tindakbalas awal di antara PNPG dan enzim sekat 
gerak. Enzim AG yang terpegun dan PNPG di atas MWCNTs-NH2 telah dicirikan oleh 
Spektroskopi  Inframerah Penukaran Fourier (FTIR) dan Mikroskop Imbasan Elektron 
(SEM). Kebolehgunaan setiap teknik untuk pengukuran antidiabitis telah diuji 
menggunakan tiga jenis tumbuhan ubatan iaitu Tebengau (Ehretia laevis), Cemumar 
(Micromelum pubescens), Kedondong (Spondis dulcis) dan ubat komersial Acarbose 
melalui spektrofotometri,  voltametrik berkitas (CV) dan kaedah amperometrik. Hasil 
kajian menunjukkan perencatan daripada ekstak tumbuhan Tebengau lebih banyak 
daripada Acarbose, Cemumar dan Kedondong. Kinetik enzim sekat gerak dan tidak 
sekat gerak telah diukur dengan menggunakan persamaan Lineweaver –Burk.  
Tindakbalas CV untuk perencatan aktiviti enzim AG didalam biosensor oleh ekstrak 
tumbuhan Tebengau telah menunjukkan hubungan linear diantara julat 0.23 – 8.29 uA 
dan pengesan tahap perencatan adalah 0.253uA. Biosensor telah menunjukkan 
sensitiviti yang baik (0.422 uA/mg  ekstrak tumbuhan Tebengau) dan tindakbalas yang 
cepat (22s). Biosensor mengekalkan lebih kurang 79.16 % aktiviti awalnya sehingga 
selepas 30 hari ianya disimpan pada suhu 4oC. Kebolehulangan dan kebolehhasilan 
teknik dan biosensor  pakai buang telah  berjaya. Oleh itu, teknik dan biosensor pakai 
buang boleh digunakan untuk mengukur potensi tumbuhan-tumbuhan herba sebagai 
antidiabitis selain daripada mengukur aktiviti ubat   antidiabitis komersial.       
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BIOSENSOR FOR MEASURING THE ANTI-DIABETIC POTENTIAL OF 

MEDICINAL PLANTS 

 

ABSTRACT 

Three alternative electro-enzyme techniques were developed for measuring antidiabetic 
potential of medicinal plants. All three techniques are based on the inhibition of α-
glucosidase (AG) enzyme in the conversion of para-nitrophenyl-α-D-glucopyranoside 
(PNPG) into para-nitrophenol (p-NP) which is catalyzed by AG enzyme. The first 
technique, multi-walled carbon nanotubes (MWCNTs) paste electrode comprised of a 
uniform mixture of MWCNTs powder and mineral oil at the ratio of 60: 40 and used 
with free enzyme and PNPG solution. The second technique, screen printed carbon 
nanotubes (SP-CNTs) electrode was based on commercial screen printed electrode 
(SPE) and used with free enzyme and PNPG solution. The third technique, disposable 
biosensor, was based on the extension of the first and second electrodes where AG 
enzyme was covalently immobilized onto amine functionalized multi-walled carbon 
nanotubes (MWCNTs-NH2) followed by entrapment of PNPG as a substrate using 
freezing–thawing treated poly(vinyl alcohol) on the SP-CNTs. The PNPG was 
entrapped at low pH to prevent the premature reaction between PNPG and immobilized 
enzyme. The immobilized AG enzyme and PNPG on MWCNTs-NH2 was characterized 
by Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy 
(SEM). The applicability of each technique for measuring antidiabetic was tested using 
three types medicinal plants namely Tebengau (Ehretia laevis), Cemumar (Micromelum 
pubescens), Kedondong (Spondias dulcis) and a commercial antidiabetic drug Acarbose 
via spectrophotometric, cyclic voltammetry (CV) and amperometric methods. The 
results showed that the inhibition obtained in the presence of Tebengau plant extracts is 
higher than that obtained with Acarbose, Cemumar and Kedondong. The kinetic of 
immobilized and non-immobilized enzyme was measured using Lineweaver-Burk 
equation. The CV response for inhibition of AG enzyme activity within the biosensor 
by Tebengau plant extracts showed a linear relationship in the range from 0.5 – 3.5 
mg/mL and an inhibition detection limit was 0.5 mg/mL. The biosensor exhibited good 
sensitivity (1.037 µA/mg Tebengau plant extracts) and rapid response within 22 
seconds.  The biosensor retains about 79.16 % its initial activity even after 30 days 
when stored at 40C. The repeatability and reproducibility of the technique and 
disposable biosensor was satisfactory. Therefore, the techniques and disposable 
biosensor could be used for measuring the anti-diabetic potential of medicinal plants as 
well as to monitor the activity of commercial antidiabetic drugs. 
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CHAPTER 1 
 
 
 

 INTRODUCTION 
 
 
 
 

1.1. Research Background 

 

Diabetes mellitus (DM) is one of the major lives threatens diseases in the world 

and caused by the absolute or relative absence of insulin (Amos et al., 1997). The 

burden of diabetes is increasing globally and 346 million people are suffering 

worldwide by diabetes according to World Health Organization (WHO, 2011). Usually, 

DM is classified as Type 1 and Type 2 in which most of diabetes patients are suffering 

by Type 2. Type 2 DM can be controlled by various synthetic antidiabetic drugs, 

however, these synthetic drugs have some side effect such as weight gain, pain at the 

site of injection, a feeling of fullness in the abdomen, hypoglycemia, and poorly 

controlled blood glucose levels (Fujimoto et al., 2013). As a result, there is an 

increasing demand for antidiabetic drugs produced from natural resources with a 

relatively low cost and fewer side effects (Liu et al., 2013) 

 

 In fact, many medicinal plants found around the world exhibit a significant 

potential for the treatment of DM. Currently, the antidiabetic potential of medicinal 

plants is measured in the laboratory through the inhibition of the AG enzyme reaction.  

In human body, carbohydrate is digested through AG and α-amylase enzyme reaction to 

produce glucose. This AG enzyme reaction can be inhibited by the medicinal plant 

extracts. The inhibition is defined as the antidiabetic potential of medicinal plants. This 

inhibition is usually determined through a number of conventional methods, such as the 
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colorimetric method [Kumar et al., 2011], the titration method [Goldberg et al., 2012) 

high-performance liquid chromatography (HPLC) [Shivanna et al., 2013]. However, 

these approaches carry some drawbacks, such as time-consuming nature and the need of 

expensive devices and well-trained operators. Moreover, these methods require 

elaborate sample pre-treatment [Malode et al., 2012]. As a result, the development of a 

convenient and highly sensitive quality control method is an urgent requirement for the 

screening of medicinal plants for the treatment of DM. 

 

For this purpose, MWCNTs was used to fabricate the MWCNTs paste electrode 

as sensor to measure the antidiabetic potential of medicinal plants. Because, the recent 

development of carbon nanomaterials have provided many new advantages for 

electroanalysis. In particular, MWCNTs are new types of carbon nanostructure 

materials which is widely using for modification of electrodes due to their electronic, 

chemical and mechanical properties, such as electrocatalytic outcome, rapid electron 

transfer rate, broad working surface area (Jeykumari et al., 2007), and chemical 

functionalization, make them particularly fascinating for electrochemical sensing 

(Shahrokhian and Zare-Mehrjardi, 2007). Moreover, the paste electrodes are easy to 

modify and they have renewable surfaces, stable response, low ohmic resistance and 

wide operational window (Shahrokhian et al., 2010; Zhou et al., 2009). 

 

Carbon nanotubes (CNTs) based screen-printed carbon nanotubes (SP-CNTs) 

electrodes were also used electrochemically to measure the antidiabetic potential of 

medicinal plants due to their many advantages: these are low-cost disposable devices 

that are mass produced, easy to use, designed to work with micro-volumes of samples, 

portable and require low amounts of reagents and samples (Moreno et al., 2010; Metters 
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et al.,2013). Finally, MWCNTs based enzymatic disposable biosensor was developed to 

determine the antidiabetic potential of medicinal plants. In this case, AG enzyme was 

immobilized by covalent immobilization with amine functionalized multi-walled carbon 

nanotubes (MWCNTs-NH2) using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide 

(EDC) as coupling reagent associated to N-hydroxysuccinimide (NHS) in order to 

improve immobilization efficiency. The immobilized AG enzyme was again entrapped 

in poly (vinyl alcohol) (PAV) together with PNPG as substrate and dropped on the 

screen-printed carbon (SPC) electrode to develop the disposable biosensor. The 

developed biosensor was used electrochemically to measure the antidiabetic potential of 

medicinal plants. Because in recent years, the electrochemical techniques are becoming 

popular due to their high sensitivity, low cost, and short analysis time (Martín-Yerga et 

al., 2012).  

 

PNPG hydrolyses by AG enzyme to release para-nitrophenol (p-NP) as the 

following reaction in Figure 1.1 (Timur and Anik, 2007). This reaction is used to 

measure the AG enzyme activity as well as to detect the antidiabetic potential of 

medicinal plants  

 

Figure 1.1: Enzymatic hydrolysis of PNPG 

 

The resulting disposable biosensor, MWCNTs paste electrode and SP-CNTs 

electrode were used for measuring the AG enzyme activity to detect the liberated p-NP 

by CV method. The activity of the biosensor and sensors were investigated by detecting 
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