BEHAVIORAL STUDY OF CONCRETE COMPOSITE WITH MIXTURE OF FLY ASH AND CONCRETE SLUDGE AGGREGATE

by isinal convitent original convitent original convitent original convitent

Report submitted in partial fulfillment of the requirements for the degree of Bachelor of Engineering

JUNE 2013

ACKNOWLEDGEMENT

In the name of Allah S.W.T, the most merciful and most gracious, Lord of the universe, with His permission Alhamdulillah the study has been completed. Praise to Prophet Muhammad S.A.W, His companions and to those on the path as what He preached upon, might Allah Almighty keep us His tenders and blessing.

I wish to express my gratitude to my supervisor, Pn. Norlia Bte Mohamad Ibrahim, Lecturer of School of Environmental Engineering, Universiti Malaysia Perlis (UniMAP) for valuable guidance and patience that enable me to complete my final year project. Thank you for all technical advice, sharing ideas and information with me. This work would not have been possible without their utmost capacity and intelligence.

Also thanks to all technicians and parties from the School of Environmental Engineering, UniMAP those involved directly or indirectly for their unselfish advice and assistance toward performing in making this research a very great success. Nevertheless, thanks for being my colleagues and helping each other completing the study. Thanks for the support, courage and helping me on everything.

I owe tremendous appreciation to my whole family, especially to my beloved parents Hj Harith Bin Hamzah and Pn Norhayaty Binti Mamat whose great understanding and their generous support in every way also thankful for understanding and given me fully support while doing this dissertation. Thank you so much and may Allah S.W.T the Almighty bless us always.

APPROVAL AND DECLARATION SHEET

This project report titled behavioral study of concrete composite with mixture of fly ash and concrete sludge aggregate was prepared and submitted by MOHD SHAKIRIM BIN HARITH (Matrix Number:101201663) and has been found satisfactory in terms of scope, quality and presentation as partial fulfillment of the requirement of the Bachelor of Engineering (Building Engineering) in Universiti risinal copy Malaysia Perlis (UniMAP).

Checked and Approved by:

.ckey (Pn. Norlia Binti Mohamad Ibrahim) **Project Supervisor**

> **School of Environmental Engineering** Universiti Malaysia Perlis

> > June 2013

MENGKAJI SIFAT-SIFAT GABUNGAN KONKRIT DENGAN CAMPURAN HABUK DAN AGREGAT YANG DISELAPUTI SISA KONKRIT

ABSTRAK

Pada hari ini, simen dan batu agregat mendapat permintaan yang tinggi yang menunjukkan peningkatan terutamanya dalam industry pembinaan. Oleh itu, alternatif untuk menggantikan sebahagian daripada simen dan agregat adalah dengan menggunakan habuk dan agregat yang diselaputi sisa konkrit. Dari penyelidikan, habuk dan agregat yang diselaputi sisa konkrit memerlukan ruang tapak pelupusan sedangkan masalah kepadatan penduduk adalah tinggi dan harga yang mahal. Terdapat empat jenis sampel peratusan yang berbeza. Untuk sampel 1, peratusan habuk dan agregat yang diselaputi sisa konkrit adalah 0% dan dikenali sebagai spesimen kawalan. Kemudian, sampel 2 digunakan 15% habuk dan 20% agregat enapcemar Seterusnya, sampel 3 menggunakan 15% habuk dan 30% agregat enapcemar. Akhir sekali, sampel 4 menggunakan 25% habuk dan 30% agregat enapcemar. Saiz konkrit yang digunakan adalah 150 mm x 150 mm x 150 mm. Ujian yang dilakukan adalah untuk membandingkan sifat kimia, fizikal dan kejuruteraan diantara konrit biasa dengan konkrit yang diubahsuai. Ujian ketumpatan yang paling tertinggi pada konkrit yang diubahsuai adalah 2360 kg/m³ untuk 28 hari. Kadar peratusan serapan air yang paling rendah pada konkrit ubahsuai adalah 2.479% untuk 28 hari. Kemudian, ujian kekuatan mampatan juga dilakukan pada konkrit ubahsuai yang mana mampu menerima beban tertinggi iaitu 24.044 MPa dalam 28 hari. Selain itu, ujian kekuatan lentur juga dijalan pada sampel rasuk yang mana sampel rasuk yang diubahsuai mampu menanggung beban 1.155 MPa. Penggantian terbaik untuk simen dan batu agregat adalah sampel 2.

ABSTRACT

Nowadays, the high demand of cement and aggregate are an indication of development especially for the construction industry. Thus, the alternative to replace partial replacement of cement and aggregate are by using the fly ash and concrete sludge aggregate. From the research, fly ash and concrete sludge aggregate needs space of landfill to dispose off whereas the population density is high and expensive price. There were four types of different percentage samples were used. For sample 1, percentage replacement of fly ash and concrete sludge aggregate was 0% and was known as a control specimen. Then, sample 2 was used 15% of fly ash and 20% of sludge aggregate. Next, sample 3 was used 15% of fly ash and 30% of sludge aggregate. Lastly, sample 4 was used 25% of fly ash and 30% of sludge aggregate. The concrete specimens' size that had been used is 150 mm x 150 mm x 150 mm in cube mould. The samples were tested to compare chemical, physical and engineering properties between standard concrete and replacement concrete. The highest density for replacement concrete was 2360 kg/m³. The lowest percentage of water absorption was 2.479% for 28 days. Then, the compressive strength also was done at replacement concrete which is able to receive higher load with 24.044 MPa for 28 days. On the other hand, the flexural strength test also was done in beam sample which is replacement beam sample able to receive 1.155 MPa of load The best replacement for cement and aggregate was sample 2.

TABLE OF CONTENTS

		Page
ACK	KNOWLEDGMENT	Ι
APP	ROVAL AND DECLARATION SHEET	Ii
ABS	TRAK	Iii
ABS	TRACT	Iv
TAB	BLE OF CONTENTS	V
LIST	r of table	Ix
LIST	r of figures	Х
CHA	KNOWLEDGMENT ROVAL AND DECLARATION SHEET TRAK TRACT BLE OF CONTENTS TOF TABLE TOF TABLE TOF FIGURES APTER 1 INTRODUCTION Introduction Problem statement Research Objective	
1.1	Introduction	1
1.2	Problem statement	2
1.3	Research Objective	3
1.4(Scope of study	3
1.5	Significant of study	5
CHA	APTER 2 LITERATURE REVIEW	
2.1	Introduction	6
2.2	Fly ash	6
2.3	Characteristic of fly ash	7

2.4	Pozzolan in fly ash	10
2.5	Fly ash as replacement of cement	10
2.6	Advantage of using fly ash	11
2.7	Concrete sludge aggregate	14
	APTER 3 METHODOLOGY Introduction Material of selection 3.2.1 Fly ash 3.2.2 Concrete sludge aggregate	15
3.1	Introduction	15
3.2	Material of selection	17
	3.2.1 Fly ash	17
	3.2.2 Concrete sludge aggregate	17
	Method of testing	
3.3	Method of testing	18
	3.3.1 X-Ray fluorescence (XRF)	18
	3.3.2 Compression test	18
	3.3.3 Slump test	19
	3.3.4 Water absorption	20
	3.3.5 Density analysis	21
(3.3.6 Flexural test	21
3.4	Preparation of samples	22
	3.4.1 Sieve analysis	22
	3.4.2 Preparation sample for compressive strength and water	23
	Absorption	
3.5	Curing	24
	3.5.1 Normal water curing	24
	3.5.2 Sea water curing	25

CHAPTER 4 ANALYSIS RESULT

4.1	Introd	uction	26
4.2	Proper	rties of fly ash from municipal solid waste	26
	4.2.1	Sieve analysis of fly ash	27
	4.2.2	Chemical composition of fly ash	28
4.3	Proper	rties of concrete sludge aggregate	30
	4.3.1	rties of concrete sludge aggregate Sieve analysis for concrete sludge aggregate test	30
4.4	Slump	o test	31
4.5	Comp	ression strength test of fly ash and concrete sludge	32
	Aggre	gate	
	4.5.1	Sample 1 (fly ash -0 , sludge aggregate -0)	32
	4.5.2	Sample 2 (fly ash -15% , sludge aggregate -20%)	33
	4.5.3	Sample 3 (fly ash $+15\%$, sludge aggregate -30%)	35
	4.5.4	Sample 4 (fly ash -25% , sludge aggregate -30%)	36
	4.5.5	Comparison on compression strength for all samples	38
	4.5.6	Compressive strength in different water curing	39
4.6	Water	absorption	40
4.7	Densit	ty analysis	42
4.8	Flexu	ral test	43
CHA	PTER 5	5 CONCLUSION AND RECOMMENDATION	
5.1	Introd	uction	45

5.2 Conclusion 45

REFERENCE

APPENDICES

48

o This term is protected by original copyright

LIST OF TABLE

No.	Table	Page
2.1	Fly ash composition	8
2.2	Table Fly ash composition Fly ash properties	9
3.1	Number of samples for compressive strength and water absorption test	24
4.1	Percentage of chemical element in fly ash and portland cement	28
4.2	Slump test result	31
4.3	Sample 1 (fly ash -0% , sludge aggregate -0%)	32
4.4	Sample 2 (fly ash -15% , sludge aggregate -20%)	34
4.5	Sample 3 (fly ash – 15%, sludge aggregate – 30%)	35
4.6	Sample 4 (fly ash -25% , sludge aggregate -30%)	37

LIST OF FIGURE

No	Figures	Page
1.1	Composition of municipal waste in Malaysia in 2005	4
2.1	Composition of municipal waste in Malaysia in 2005 Fly ash from municipal waste Concrete sludge aggregate Experimental flow Compression testing Slump test process	8
2.2	Concrete sludge aggregate	14
3.1	Experimental flow	16
3.2	Compression testing	19
3.3	Slump test process	20
3.4	Flexural testing	21
3.5 ©	Sieve processing	23
4.1	Fly ash and portland cement particle size	27
4.2	Chemical element for fly ash	29
4.3	Concrete sludge aggregate and course aggregate particle size	30
4.4	Compression result for sample 1 (fly ash -0% , sludge aggregate -0%)	33

4.5	Compression result for sample 2 (fly ash – 15%, sludge aggregate – 20%)	34
4.6	Compression result for sample 3 (fly ash – 15%, sludge aggregate – 30%)	36
4.7	Compression result for sample 4 (fly ash -25% , sludge aggregate -30%)	37
4.8	Comparison compressive strength between various samples	38
4.9	Comparison compressive strength in different water curing	40
4.10	Comparison compressive strength in different water curing Water absorption result Density analysis graph Flexural strength result	41
4.11	Density analysis graph	42
4.12	Flexural strength result	43
	rhisite	

o this term is protected by original copyright