AN EVALUATION OF STRUCTURAL JOINT IN IBS CONSTRUCTION SYSTEM

by original copyright MOHD KHAIRIL HAKIMI BIN KHAIROLAZAR

HAKIMI BIN KHAIK

JUNE 2013

ACKNOWLEDGEMENT

The writing of this dissertation has been one of the most significant academic challenges I have ever had to face. Without the support, patience and guidance of my supervisor, En. Mohd Zulham Affandi b. Mohd Zahid, this study would not have been completed. I attribute the success of my undergraduate degree to his encouragement, wisdom and commitment to the highest standards. One simply could not wish for a better or friendlier supervisor.

I have been blessed with a helpful and concern academic supervisor Pn. Roshazita binti Che Amat, who inspired and motivated me despite the enormous work pressures we were facing . I am indebted to her for being a great companion who always there to lend a hand to me and clear my doubts on writing this thesis.

Finally, I am deeply grateful for the encouragement my family members shown to me throughout my studies at university. Their continuous support and profound understanding are the reasons that keep me going and provided me the determination to complete this dissertation.

APPROVAL AND DECLARATION SHEET

This project report titled "An Evaluation Of Structural Joint In IBS Construction" was prepared and submitted by Mohd Khairil Hakimi bin Khairolazar (Matrix Number: 091200673) and has been found satisfactory in terms of scope, quality and presentation as partial fulfillment of the requirement for the Bachelor of Engineering (Building Engineering) in Universiti Malaysia Perlis (UniMAP).

. 6
, O`
in the second
Checked and Approved by
×
×
. 67
(En. Mohd Zulham Affandi b. Mohd Zahid) Project Supervisor
Ducient Companying
Project Supervisor
.5
(C)
\checkmark

School of Environmental Engineering Universiti Malaysia Perlis

JUNE 2013

PENILAIAN SAMBUNGAN DALAM STRUKTUR BANGUNAN BERINDUSTRI

ABSTRACT

Pratuang papak konkrit dan dinding ricih kian mendapat sambutan popular dalam industry pembangunan di Malaysia. Tesis ini membincangkan penilaian struktur dalam Sistem Bangunan Perindustrian (IBS) auntuk menentukan apakah jenis struktur sambungan yang dilaksanakan di kolej kediaman Sungai Chuchuh. Dalam usaha untuk menentukan jenis sambungan dua model pratuang papak telah direka menggunakan Staad Pro 2004. Model pertama terdiri daripada ricih dinding dan papak pratuang dibina dengan besi bar dan model kedua dibina tanpa besi bar. Lukisan pembinaan diambil untuk membangunkan kedua-dua model demi memastikan dimensi adalah tepat dan selaras dengan tapak pembinaan. Seterusnya, gabungan beban mati dan beban hidup yang diberikan kepada struktur model untuk menghasilkan output yang tepat untuk kolej kediaman keseluruhan. Objektif kajian ini adalah untuk menentukan keupayaan momen, daya ricih dan bentuk anjakan kedua-dua model. Berdasarkan output yang dihasilkan oleh Staad Pro 2004 penilaian boleh dibuat dari momen lentur, daya ricih dan rajah anjakan. Tambahan pula, jenis sendi disematkan, sambungan sendi separa tegar dan tegar. Ketiga-tiga sambungan yang berbeza dari segi kekuatan, kemuluran, kos, dan kelebihan. Seterusnya, selepas membandingkan output hasil dengan gambar rajah daripada satu lagi kajian yang dilampirkan pada kajian literatur kesimpulan boleh dibuat bahawa jenis sambungan bagi struktur IBS di kolej kediaman di Sungai Chuchuh adalah sambungan tegar.

ABSTRACK

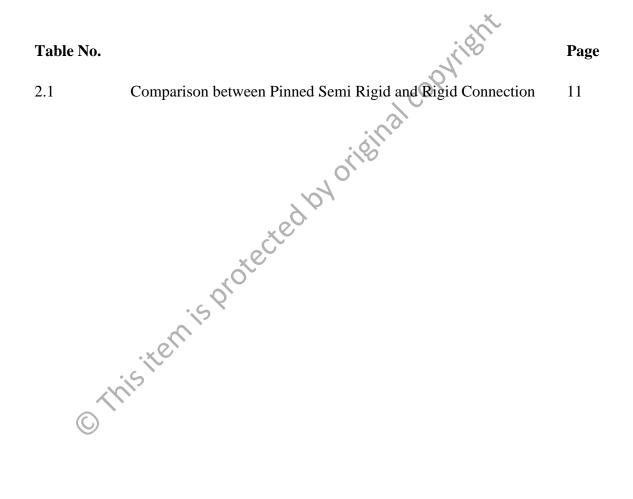
Precast concrete slab and shear wall are leading the Malaysian construction industry as the usage of the precast component has increase from previous years. This thesis of evaluation of joint structure in Industrialized Building System (IBS) is to determine what type of joint structure implemented in Sungai Chuchuh residential college. In order to determine the type of joint two model of precast slab are develop using Staad Pro 2004. The first model consists of shear wall and precast slab constructed with dowel bar and the second model is constructed without the dowel bar. Construction drawing is taken to develop these two models as to ensure the dimension is exact with construction site. Next, the combination loading of dead load and live load are assigned to the models structure to produce an accurate output for the whole residential college. The objectives of this study are to determine the moment capacity, shear forces and the displacement form the two models. Based on the output produce by the Staad Pro 2004 evaluation can be made from the bending moment, shear force and the displacement diagram. In additional, the types of joints are pinned, semi rigid and rigid joint connection. These three connections is differ in term of the strength, ductility, cost, and advantages. Next, after comparing the result output with the diagrams form another study attached on the literature review a conclusion can be made that the type of joint connection for the IBS structure at residential college of Sungai Chuchuh is a rigid connection.

TABLE OF CONTENTS

1/18	Page		
ACKNOWLEDGMENT	i		
APPROVAL AND DECLARATION SHEET	ii		
ABSTRAK	iii		
ABSTRACT	iv		
TABBLE OF CONTENTS	vii		
LIST OF TABLES	viii		
ACKNOWLEDGMENT APPROVAL AND DECLARATION SHEET ABSTRAK ABSTRACT TABBLE OF CONTENTS LIST OF TABLES LIST OF FIGURES	ix		
LIST OF ABBREVIATIONS	xi		
wistern			
CHAPTER 1 INTRODUCTION			
1.1 Overview	1		
1.2 Problem Statement	2		
1.3 Objectives	4		
1.4 Research Scope	5		
1.5 Benefit of Research	6		

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction of Precast Concrete Connection	7
2.2	Portal Frame	
2.3	Wall Frame	12
2.4	Skeletal Frame	13
2.5	Types of Precast Concrete Connections	14
	2.5.1 Pinned Connection	15
	 2.5.1 Pinned Connection 2.5.2 Moment Resistance Connection Tension, Bending Shear and Compression Connection 2.6.1 Tension and Bending Connection 2.6.2 Shear Wall 	15
2.6	Tension, Bending Shear and Compression Connection	16
	2.6.1 Tension and Bending Connection	16
	2.6.2 Shear Wall	17
	 Tension, Bending Shear and Compression Connection 2.6.1 Tension and Bending Connection 2.6.2 Shear Wall 2.6.3 Shear Connection 2.6.4 Compression Connection 	18
	2.6.4 Compression Connection	19
2.7	2.6.4 Compression Connection Load Combination	21
CHA	APTER 3 METHODOLOGY	
3.1	Introduction	22
3.2	Structure Loading	25
3.3	Design Process of The Model	25
3.2	Design of the Model	26
3.3	Analysis Parameters and Specification	28
3.5	Steel Bar Connection (Dowel Bar)	29


Steel Bar Connection (Dowel Bar) 3.5

CHAPTER 4 RESULT AND DISCUSSION

4.1	Introd	uction	30
4.2	Analy	sis and Result	30
	4.2.1	Maximum Displacement For The Isometric View	31
	4.2.2	Maximum Displacement	32
	4.2.3	Maximum Moment for The Isometric View	34
	4.2.4	Maximum Moment	35
	4.2.5	Maximum Shear	36
4.3	Summ	ary of Data Analysis	38
4.4	Discus	ssion	39
СНАР	TER 5	Maximum Moment for The Isometric View Maximum Moment Maximum Shear hary of Data Analysis ssion SCONCLUSION uction usion hmendation	
5.1	Introd	uction	40
5.2	Conclu	usion	40
5.2	Recon	nmendation	41
5.3	Comm	nercialization	42
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	IS TO	
REFE	RENC	ES	43

APPENDICES

### LIST OF TABLE



## LIST OF FIGURES

Figure No.		Page
2.1	Types of Connection in a Precast Structure	9
2.2	Difference between Effects of Connection Types	
	To Moment Distribution in Structure	10
2.3	Precast Skeletal Frame	13
2.4	Shear and Moment Diagram For Shear Wall Due to	
	The Sum of Wind Loads on The Windward and	
	Leeward Sides of The Building	17
2.5	Critical Loading Arrangement Suggested In BS8110-1997	21
3.1	Summary of Analysis and Design Using Staad Pro 2004	24
3.2 🔘	Creating a New Design Sheet	25
3.3	Generating Model Geometry	26
3.4	The Node Design Model	27
3.5	Full Three Dimensional Design Model	27
3.6	The Dowel Bar Connection	29
4.1	Whole Diagram of Precast Slab and Shear Wall When	31
	Applied 1.5kN Load	

4.2	Maximum Displacement for Isometric View	31
4.3	Maximum Displacement without Dowel Bar	32
4.4	Maximum Displacement with Dowel Bar	33
4.5	Maximum Moment for Isometric View	34
4.6	Maximum Moment without Dowel Bar	35
4.7	Maximum Moment with Dowel Bar	35
4.8	Maximum Shear with Dowel Bar	36
4.9	Maximum Moment with Dowel Bar Maximum Shear with Dowel Bar Maximum Shear without Dowel Bar	37
4.10		
	Summary Result of Moment Shear and displacement at Connection	38

### LIST OF ABBREVIATIONS

