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Computational Simulation of Ultraviolet ZnO Diode Laser
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Abstract: This article deals with a mathematical technique for the study of functionality of
semiconductor laser, by its rate equations, to be used in the simulation of high speed optical
systems. We describe the development of numerical simulation model of a p-ZnO laser
emitting in UV optical wavelength. A powerful dynamic algorithmical model is used to
study the p-ZnO active region waveguide laser. It is based on time dependant rate equations
of a quasi two levels system for the population density and time dependant for the pump and
optical signal power. The model is sufficient to account for many of the observed dynamics
in a single mode semiconductor laser in response to a dynamic drive current, such as
relaxation oscillations and frequency chirping.

1. Introduction

Recently one can observe a great interest to ZnO films possessing nanocrystallites as materials for electronics,
optoelectronics and others technological applications. With a wide band gap which is equal at 3.37 eV and a
resistivity (10° -10° Q cm) which comes, partly, from stoichiometric shift mainly due to oxygen vacancies
and/or zinc interstitials, ZnO is a good materials for ultra violet diode laser (LD) which are widely used for
applications in photonics, information storage, biology and medical therapeutics[1,2].

The optical power emitted by the diode laser is proportional to the current supplied to the ZnO semiconductor
heterojunction. The laser dynamics can be modeled by coupled rate equations which describe the relation
between the carrier number , the photon density and the optical phase[3]. To use these models, values for the
rate equations, parameters must be chosen appropriately in order to obtain agreement between simulated and
measured results for system performance.

The purpose of this work is to solve the coupled nonlinear rate equations describing the complex electric field
and the carrier density in a simple model of the ZnO semiconductor laser. The model is sufficient to account for
many of the observed dynamics in a single mode semiconductor laser in response to a dynamic drive current,
such as relaxation oscillations and frequency chirping [4].
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The output of the solver is the time, injection current, and the transformed components of the state vector,
computed at discrete time steps. The rate equations are Integrated using the fourth order Runge-Kutta
computation[5]

2. Rate equations: steady state

The laser dynamics can be modeled by coupled rate equations which describe the relation between the carrier
number Ny(t), the photon density Sy(t) and the optical phase ¢(z) . [1-6].
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No is the carrier number at transparency, z, is the photon lifetime, z, is the carrier lifetime, I is the optical
confinement factor describing the confinement mode in the active region, S is the spontaneous emission factor, &
is the gain compression factor, g(N,T) is the optical gain coefficient dependent on the carrier density and the
temperature function, I(t) is the injected current, «, is the linewidth enhancement factor and q is the electron
charge. The output power and the threshold current are given by: [7].
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Where 5 is the quantum efficiency, h the Planck constant and v the radiation frequency. The steady-state
. . . . . . .. dNpl) dEpit
solution to the rate equations is to obtained by setting all the time derivatives oo an ::r ! to zero. The

carrier concentration that satisfies a given steady-state injected current is obtained by iterative self-consistent
solutions of the two coupled equations. Hence, the couple rate equations (1) and (2) will be written as follow:
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Using equations (6) and (7) the carrier number N will be deduced as follow:
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3. Photon density S(f) and Frequency Response of the Semiconductor Laser.

3.1. Photon density

For laser with small signal, the expression of the photon density S(f) and transfer function R(f) above
threshold are as follow[8].
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3.2. Amplitude signal modulation
We consider a power modulation given by:

P(t) = Py[1 + M.cos(2mFy t)] (13)

where Pq is the unmodulated power and P(t) is the modulated power. The parameter M is called the
power modulation index. The signal on the photodiode is modulated at a frequency Fm. At the output
of the Fabry- Perot, we observe the optical spectrum. For weak M, the electric field can be written as
follows: [9].
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3.3. Frequency signal modulation

Let us now consider a pure sinusoidal frequency modulation at frequency at frequency f:

v(t) = vy, + Av.cos (2rft) (16)
The phase of the electric field is given by:

f;dt' f:“[t'} = 1 t+ % sin (2mft) (17)
The electric field can therefore be expressed as follows:

E,(t) = A.cos [ETI‘E:’LI: + % sin(2nft+ :;bl,}] (18)

We define m = .va as the frequency modulation index:

This field can be expanded in a sum of sinusoidal terms using Fourier techniques as follows:
E; = A.Jp cos.(2mvpt ) — A Jy(m).cos(u(v, — fit + @) + A Jy(m).cos @rlv, — Flt +¢y)
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Frequency modulation is therefore characterized by the presence of sidebands at harmonics of the
modulation frequency generated by Bessel function];{(m) fori=1,2,3... Bessel functions can
evaluate to zero for specific values of the modulation index. For example, Jo(2.4) = 0: the optical
carrier at v, is suppressed for the modulation index equal to m=2.4

4. Numerical Simulation and Results.
4.1 Steady state solution
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A desired modulated laser signal can be generated by direct injection of the laser diode by an electric
signal I(t) of suitable format. The carrier number Np (t), the photon density or optical signal Sp(t ) will
carry the same information as the modulating electric signal 1(t) does. Therefore, in the absence of
current modulation, the laser diode emits a constant-power monochromatic light. The current
modulation induces a variation of the power and frequency of the beam. The deriving current of a
modulated laser diode is the sum of two terms. The first term represents the bias current, I, which sets
a value above the threshold level of the laser while the second term, which determines the modulation
level, is noted I,. Both currents are adjusted to achieve the desired variable power. Hence, the
injection current I(t), which is assumed to represent the modulating electrical signal is given as follow:
[10].
I(t) =1 + I f(1) (20)

Where f(t) is a time function witch describe the signal current format.

The ZnO laser diode is formed by phosphorus doping a very thin layer of n-ZnO wafer. The cleaved
facets of the semiconductor ZnO active region serve as mirrors for the laser cavity figure.l. A
recombination between the electrons of the n-junction with the holes of the p-junction is obtained by
an electric current. Photons emitted into a mode of the waveguide will travel along the waveguide and
be reflected several times in the mirrors. When the gain is higher than the losses of the cavity the laser
starts to oscillate . The energy of the emitted photons is therefore approximately equal to the band gap
energy of the semiconductor.

Using the laser parameters listed in Table 1, the threshold current for the modeled laser diode is
50mA. Together with a parasitic time-constant of 0.5 ns, a typical plot of the transient carrier density
and photon number from the deterministic single-mode model is recorded on figure.2.

We note that the coupled relaxation oscillation occurs between the carrier density and photon
number before reaching steady state.

The damping rate of laser relaxation oscillations is determined by the non linear gain and parasitic
time-constant. As illustrated in figure.3a and figure.3b directly modulated lasers are derived by
different value of the current source I(t), which modulates the injected carrier density in the active
layer.

The laser operation and dynamics are influenced by property of gain suppression when the laser is
biased above threshold, which originates from intraband relaxation processes of injected carriers. [11].

Table.1: diode laser parameters.

Parameter Symbol Value
Optical Confinement factor r 0.05
Active region volume v 3.10"cm®
Spontaneous emission factor B 10 °°
Photon Lifetime Tp 32.10 %4
Carrier lifetime T, 2.10 Ps
Slope gain constant o 510 ‘cm °s’t
Carrier density at transparency Ng 510 ®cm °
Quantum efficiency n 0.5
Gain compression factor € 410-"
Linewidth enhancement factor o, 5
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Figure.l :diode laser structure showing the active region , the P-
doped ZnO, the N-doped ZnO and the two cavity mirrors.
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4.2. Transient solution to the rate equations

To obtain transient solutions to the rate equations we have to solve numerically the rate equations to
obtain the optical power and the phase of the electrical field at the laser output. For this, we use a
fourth-order Runge-Kutta algorithm, we proceed first by a number of simplifying assumptions such as
(1) the photon and electron distributions are spatially uniform, (2) the refraction index is spatially
uniform and the effect of its variations with time is neglected, (3) the optical confinement factor and
the spontaneous emission factor are treated as constant. [12].The computational result is given on
figure.3
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Figure.3: Transient dynamics of carrier density and photon number

for a deterministic single mode rate-equation model with bias
current of 50 mA.

It will be possible to obtain very short optical pulses, suitable for high-speed light wave
telecommunication systems, from a quasi-rectangular modulation current. In these operation regime
the small signal laser model, defining the modulation index as the ratio of the modulation current and
the difference between the bias and the threshold current, we can obtain different pulses just by
varying the bias current

In figure.4 we can see the simulated I(t) and the laser signal. It becomes clear that the optical signal
can carry the same information as the modulating electric signal does. There exists a significant
difference between the up and down levels of the optical signal such that one can distinguish the 1 and
0 bits. In addition, the bits duration of both the electric signals and the optical ones are identical.: [13].

Figure.4: Transient dynamics of carrier density and photon number
for a deterministic single mode suitable for high-speed light wave
telecommunication systems.
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4.3. Frequency response in optical modulation

In practice, optical modulation is a way to minimize the effects of electrical parasitics. Within the
model, this is equivalent to adding an optical perturbation to optical signal generated by the carriers.
The frequency response of the semiconductor laser, given by the equationl3,with the frequency
response of the mount fixture.

On figure 5 we plot the simulated optical frequency responses of the laser obtained using the full
model with parasite effects. We note that the bandwidth is mainly controlled by the resonance
frequency figure.5 The damping due to the injected current variation is simulated and recorded on
figure.6, the latter being significantly influenced by parasitics and adiabatic phenomenon. We note
also that the bandwidth increases when the bias current increases [7,14].
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Figure.5: Variation of the bandwidth with the resonance frequency without damping
a: f= 6.6 GHz, h:7.4 GHz, c:7.8 GHz and d: 9.9 GHz.
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Figure.6: Variation of the bandwidth with the bias current I,
a: lp=30pA, b: I, =40uA, c: [;=50uA and d:I, = 60uA.

We note (see figure 7-1) that the frequency curve bandwidth varies quasi-linearly with the material
frequency response but its variation with the bias current, as showed on figure 7-11,.does not seem one

45 0

Bias Current L (nA)

Figure 7.1. Bandwidth variation as function Figure 7.11. Bandwidth variation as function
i of the bias current. '

| of frequency response. iporthebiascurrent. :
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4.4. Frequency chirping

Diode lasers suffer from the frequency drift caused by changes in the junction temperature, by current
noise, and by the perturbation of the external cavity length used for narrowing the laser spectrum. We
can observe the effects of chirp on the spectrum of the signal modulated directly by amplitude
modulation given by equation (15). This theoretical result is simulated and recorded on figure.8-I
while the frequency modulation given by equation (19) is simulated and represented on figure.8-II.
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Figure 8-I Effects of chirp on the spectrum i Figure 8-11. Effects of chirp on the spectrum

1 of the signal modulated directly by : :of the signal modulated directly by :

amplitude modulation. i ifrequency modulation. |
The deformation of the carrier wave is the most visible effect occurring in the signal. This effect is
quite larger at lower bit rates, as the adiabatic phenomenon is dominant. This is related to the transient
chirp, and reveals that the frequency excursion, for the photon density, is different in minimum signal
(low level) to the maximum signal (high level) figure.9[3]

Figure.9: Frequency chirping visible on the single mode signal where
the frequency excursion, for the photon density, is different in minimum
signal (low level) compared to the maximum signal (high level).
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Conclusion

We have simulated a ZnO laser diode using an efficiency computational program and our results are in
good agreement with others theoretical and experimental works. This program has been used to study
the modulation response of laser diode emitting in the 380 nm ultraviolet wavelength. The simulation
program developed can be used to illustrate the performance of a waveguide laser diode as function of
device parameters for all semiconductors electrically pumped laser diode.
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