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 Logarithmic Number System (LNS) is an alternative beside Floating Point (FLP) 
when an application requires a large dynamic range in the number processed. It 
allows simple implementation of multiplication and division using a Fixed Point 
(FXP) method without rounding error. In contrast, LNS addition and subtraction 
become more complex procedure. Therefore over the year, difference ways of 
improving the addition and subtraction function have been purposed. In this paper 
several techniques have been discussed and analysed such as direct lookup table, 
interpolation, table partitioning and co-transformation for approximating LNS 
addition and subtraction.  
 
  

INTRODUCTION 
 
 Usually computer arithmetic unit include four major basic operations such as addition, subtraction, 
multiplication and division. Commonly, the researcher always chooses FLP methods if application needs a large 
dynamic range compare to LNS. It’s because LNS are not popular as FLP. LNS still in research and also handle 
exceptional cases involving zeroes, infinities, underflows or overflows [1].  
 Direct lookup table first suggested by Earl Swartzlander [2] but it seems impractical for long word length 
numbers, especially 32-bit. Another technique has been introduced known as the linear interpolation method, 
but it mainly provides for only addition algorithms which require a multiply unit in the hardware system [3]. 
The other technique is table partitioning. Table partitioning usually join with the interpolation technique with 
the aim of reducing the size of lookup tables [4-7]. More recently, a technique that can offer considerable 
memory savings compared to others is a combination of co-transformation and interpolation procedures.  
 The objective of this paper is to analyze various technique for approximating LNS addition and subtraction. 
The paper is organized into seven major parts. In Section 2, direct lookup table was reviewed while in section 3, 
interpolation technique was analyzed. Section 4 and 5 were discussed about table partitioning technique and co-
transformation technique. In section 6, the discussion for each technique was performed. Finally in section 7, the 
results were concluded. 
 
Direct lookup table: 

 In computer science, a lookup table is an array that replaces runtime computation with a simpler array 
indexing operation. The savings in terms of processing time can be significant, since retrieving a value from 
memory is often faster than undergoing an expensive computation or input/output operation [11]. The first LNS 
architecture for addition and subtraction was introduced by Earl Swartlander in 1975 [2]. The concept was a 
direct equation (1.0) and (2.0) using a lookup table or us calls read only memory (ROM) based on hardware that 
cover all the probability value of sb(r) and db(r). 
 
L1 = x + y    
     log2| L1 | = log2 | x + y |  
                   = log2 | x (1 + (y / x)) | 

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Array_data_structure
http://en.wikipedia.org/wiki/Input/output
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       = log2 | x | + log2 | 1 + (y / x) | 
       = log2 | x | + log2 |1 + log2 | y | - log2 | x |) | 
       = i + log2 | 1 + 2j-i | 
       = i + log2 | 1 + 2r | 
       = i + sb(r)                        (1.0) 
 

L2 = x - y    
     log2| L2 | = log2 | x - y |  
                   = log2 | x (1 –(y / x)) | 
       = log2 | x | + log2 | 1 - (y / x) | 
       = log2 | x | + log2 |1 - log2 | y | - log2 | x |) | 
       = i + log2 | 1 - 2j-i | 
       = i + log2 | 1 - 2r | 
       = i + db(r)                        (2.0) 
 
 As usual, the implementations of LNS addition and subtractions always have to limit the variable r to either 
positive or negative value. But usual the r restricts to negative value because at certain point the function of 
sb(r) and db(r) have an output of zero or known as the essential zero. 
 
Interpolation: 

 Interpolation as a general is finding a point between two known points. It is the other technique to avoid the 
problem of memory space direct lookup table. But it will increase the delay and also introduces its own error [1]. 
The direct interpolation technique by Arnold [3] was first introduced to provide only for addition algorithm, sb 
which is require a multiply unit in the hardware system. For the interpolator, r is dividing into 2 parts, rh and rl, 
hence r = rh + rl. rh encompasses the highest bit of the variable, whereas rl is represent the lowest bits [1]. 
In the general, the direct interpolation can be written as: 
 
sb(r) = sb (rh + r l) ~ sb(rh) + C(rh) . r l             (3.0) 
 
 Where the lean of C (rh) can be choose from any method such as Lagrange. Memory usage can be reduced by 
increasing the lower bit, but the accuracy of the approximation decreases too. 
 Another important interpolator was purposes by Taylor in 1983 [3]. It name linear interpolator. Taylor 
approximation sb(r) as: 
 
sb(r) = sb(rh) + sb (rh). r l                                      (4.0) 
 
 From this technique, a multiply still required to compute the function. Another disadvantage is this technique 
is not reasonable for subtraction algorithm. Another suggested interpolation procedure was proposed by Henkel in 
1989[9]. This technique also like before, not reasonable for subtraction algorithm. 
 
Table Partitioning: 

 Usually, partitioning is often combined with an interpolation technique. Instead of using a single uniform 
partition (direct lookup table approach) [2], the technique can be realized by segregating the ROM into various 
sizes of interval mapping with the domain function of addition and subtraction algorithms. These intervals are 
distributed in smaller regions with similar widths of partition endpoints, hence providing substantial saving in 
ROM area.  
 Taylor [5] suggested a 20-bits LNS processor using a table partitioning method for both addition and 
subtraction in 1998. 
 Another researches, Stouraitis [9] produced an enhanced version of Taylor’s architecture by compressing the 
lookup table address space and inserting pipelining registers in the addition and subtraction data path. 
 Another technique was presented in 1990 by Lewis [6] using a partitioning procedure with linear 
interpolation. An integer multiple-of-two format was adopted at each interval of r less than -1 for subtraction, an 
in all cases of region r for addition. For subtraction in the region -1 < r < 0, the power of two format was 
proposed. In 1994, Lewis [7] applied the table partitioning concept with an interleaved memory scheme. 
 
Co-Transformation: 

 Based on the earlier discussion, most of the techniques presented so far has the same problem of solving the 
db(r) function when r is close to zero. They incline to be either higher in cost, in terms of lower in accuracy, 
memory or else. Other techniques which can avoid this problem are using the co-transformation procedure. The 
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idea is to convert the argument of db(r) into modified value that are guaranteed to avoid the singularity of the 
function [1]. 
 The first important co-transformation technique was known by Coleman in 1995[12], with applying the 
concept in the region -0.5 < r < 0 for the db(r) function. For this technique, the need for interpolation in the 
region -0.5 < r < 0 can be eliminated, thus substantially reducing the size and complexity of the lookup tables 
required. Note for the sb(r) function, an interpolation scheme was applied throughout all regions. In 2000, 
Coleman [13] presented in details the implementation of this co-transformation together with interpolation in a 
32-bits system. With significant improvements in accuracy over FLP, a total of 321 kbits were required in order 
to execute the LNS addition and subtraction. Recently, Coleman [14] conducted an experiment to determine the 
feasibility of integrating the LNS system into a microprocessor based on the proposal in [13].  
 A chip of a 32-bits LNS microprocessor, named the European Logarithmic Microprocessor (ELM), was 
manufactured using 0.18 µm CMOS technology. This was compared with the existing FLP DSP device from 
Texas Instruments, which has one of the fastest speeds obtainable in 0.18 µm technology. Besides clearly that 
the results were more accurate, the speed of the ELM was also substantially improved over the FLP device, at 
24ns whilst performing addition and direct subtraction, and for subtraction using co-transformation. 
 A different but related co-transformation technique to Coleman’s was given by Arnold in 1999[13]. Unlike 
Coleman method, which a value at the singularity to a negative argument of db that will fall in the region to the 
left of -0.5, Arnold method avoids the singularity by transforming to a positive argument of sb which does not 
have a singularity. Hence whenever r >0, Arnold’s technique is the most appropriate due to the positive value 
generated for the interpolation after being transform. If r < 0, then Coleman’s technique is the most natural to 
adopt because the transformed argument provided to the interpolation is negative. For that reason, Coleman’s 
method is preferable given that LNS researcher tended to apply a negative value of r, since this reduces the 
ROM size dramatically when approaching essential zero. 
 
Discussion: 

 The main concern of this paper is to determine which technique that can provide the best approach to 
approximate LNS addition and subtraction. Through observation and analysis, it seems that combination of two 
or more techniques can generate better result either from size of ROM, complexity, accuracy and speed. Some 
simple modification can obviate the need for largest ROM device, reduce the delay, and thus provide for a neat 
integration of the two subsystems. As prove a smaller modification to the interpolator, also reducing storage and 
significantly reducing delay, has been proposed [1]. 
 
Conclusion: 

 Four techniques namely direct lookup table, interpolation, table partitioning and co-transformation have 
been discussed as to compute the addition and subtraction operations. In summary, it can be observed that the 
majority of the suggested designs collaborate with the interpolation method for approximating the addition and 
subtraction functions. It is known that the combination between the co-transformation and interpolation methods 
able to produce better speed than FLP system. 
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