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Abstract—The relationship between specific absorption rate (SAR)
and antenna gain inside the head due to the metal-frame spectacles
was investigated. The radio frequency (RF) energy source considered
is the smartphone used in the frontal face. A computer simulation
using CST Microwave Studio 2012 was used for the investigation.
Two sets of dipole antennas operated at 900MHz and 1800 MHz for
GSM applications, were used as representative radiation sources from
a mobile phone. Parametric studies were conducted to determine the
optimum length of the metal rod, and the length was used to study the
possibility of RF irradiation of the metal spectacles model. Then, the
spectacles model was used as an analysis tool to study the interaction
between gain and SAR in the head. The radiation pattern was plotted
to identify the causes of the interactions. The gain decreased when
the energy source was very close to the spectacles and SAR increased
enormously.

1. INTRODUCTION

Through the past few years, mobile communication devices operating
in the radio frequency (RF) range have spread into the market very
rapidly. This leads to users being exposed to the RF electromagnetic
radiation emitted by mobile communication equipment, such as cellular
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phones. Concern about possible health effects due to exposures to
electromagnetic fields (EMs) has increased among the public and
professionals since these communication devices have proliferated
around the globe [1–8]. This concern has caused an increase in the
research emphasis on analyzing the rate at which electromagnetic
radiation is being absorbed by the human body [1–7, 9–17].

Specific absorption (SA) is defined as the quotient of the
incremental energy (dE ) absorbed by an incremental mass (dm)
contained in a volume (dV ) of a given density (rho). However, SAR
is defined as the rate of energy (dE ) absorbed or dissipated in an
incremental mass (dm) contained in an incremental volume (dV ) of
a given density (rho) [1–7, 9–11, 18–41]. Mathematically, SAR can be
expressed in watt per kilogram (W/kg) as

SAR =
d

dt

(
dE

dm

)
=

d

dt

(
dE

ρdV

)
(1)

Cooper’s initial research [1] considered the implantation of metal
inside the head and found that the rate of RF energy absorption
was improved in the area. Metal objects, such as spectacles, have
received limited attention in the literature; however, several studies
have been conducted to investigate the maximum SAR for various
shapes of spectacles [2, 11] and glass lens [2, 5]. The paper showed that
metallic spectacles can re-distribute the energy produced by the cell
phone’s antenna, causing the efficiency to drop and the peak SAR to
increase. The head also was irradiated from in front of the eye when
using realistic, mobile-phone models in [7] to decrease the value of SAR.
But there are still uncertainties in study regarding the performance of
the antenna and SAR to the human head [15]. The magnetic resonance
imaging (MRI) model with the heating effect [26–29, 37, 42–44] was
investigated, and it was found that tissue was heated in the presence of
implanted medical leads [29]. These papers showed that metal objects
close to biological matter may increase SAR in the biological matter.

In the present work, the maximum value of the SAR was
investigated intensely by determining the relationship between the
maximum absorption rate and the changes in the gain of the antenna.
By changing the distance between the antenna and the metal-frame
spectacles or head model and observing the results, it was hypothesized
that the antenna gain would decrease if the antenna were too close to
the metal object and tissue; this could lead to increases in the value of
SAR.
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2. METHODOLOGY

2.1. Dipole Antennas as Exposure Sources

The RF energy source to be considered is smartphones, which are used
often in the frontal face area instead of close to the ear. A dipole is
represented as a frontal radiation source used in each simulation. The
changes of SAR that were affected by the RF energy coupled with
metal spectacles and the location of the antenna with respect to the
human face have received limited attention in the literature.

Two half-wave dipole antennas 900 MHz and 1800MHz were used
as the exposure sources for this study. Figure 1 shows the dimensions
of the antennas. The S11 performance and farfield radiation patterns at
900MHz and 1800MHz, shown in Figure 2 and Figure 3 respectively,
together with Table 1 summarize the radiation characteristics of the
antennas. Since not all radiation patterns from the mobile phones

Table 1. Summary of the characteristics of the radiation.

Characteristics 900MHz 1800MHz
Main lobe magnitude 2.3 dBi 2.3 dBi
Main lobe direction −90.0 deg 90.0 deg

Angular width (3 dB) 76.9 deg 77.5 deg
Efficiency 99.9% 99.42%

(a)

(b)

Figure 1. Diagram of dipole antenna with dimensions for (a) 900MHz
and (b) 1800MHz.
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(a) (b)

Figure 2. Performance magnitude of dipole antennas S11 in dB for
(a) 900 MHz and (b) 1800 MHz.

(a) (b)

Figure 3. Radiation characteristics of a dipole antenna as a radiation
source at 900MHz: (a) S11 magnitude in dB; (b) radiation pattern.

radiated with the same pattern, the radiated field distribution of the
dipole antenna was believed to be the most relevant antenna for this
work instead of the specific or typical antennas for current mobile
phones, which operate in the range of GSM900 and GSM1800 range.
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2.2. Head Models

The specific anthropomorphic mannequin (SAM) phantom head
model, also called SAM, was provided by CST Microwave Studio (CST
MWS) [30], which included the shell and liquid [44–48]. The outer shell
of the head had a fixed relative permittivity of 3.5 with an electrical
conductivity of 0.0016 S/m in this simulation [6, 47]. Table 2 shows
the parameters of the head simulating liquid (HSL) used for both of
the GSM frequency ranges used. The results for all simulations were
normalized to 1 Watt accepted power, and the worst case scenario was
assumed to be the case in which the mobile phone’s antenna required
more power when operated at a long distance from base stations [31].

This SAM phantom head model was a good choice for observing
radiation patterns and for fast calculations, but its accuracy was
suboptimal. In the heterogeneous head model, the complex and
actual human anatomical structure existed as a voxel data set, which
was comparable to the human head, for measuring the absorption of
radiation. Thus, the HUGO human head model, also called HUGO,
was used to determine the exact location for optimum RF energy
absorption inside the human head when a mobile phone was operated
in the frontal face area. The advantage of CST Microwave Studio
(CST MWS) is that it allows the importation of arbitrary voxel data
sets for an accurate SAR study. The most prominent and most often
used HUGO model is the anatomical data set of the Visible Human
Project. The so-called Voxel Man is based on a dissected male corpse
sliced into several thousand layers [26]. The model is performed at the
resolution of 1mm, and different tissue materials were chosen. The
area of interest can be selected a priori in a side view and front view.
In this study, only the head region was used for the SAR calculation.
The frequency-dependent dielectric properties of the tissues used in this
model were available in the data sheet of the Federal Communication
Commission (FCC) [26, 27]. The HUGO model was used after the SAR
validation using SAM phantom head, and, then, the absorption level
was compared for the two head models. Illustrations of the SAM and
HUGO human head models are shown in Figure 4.

Table 2. Parameters of the head simulating liquid (HSL) [6].

HSL Permittivity, εr Conductivity (S/m)
900 MHz 41.5 0.97
1800MHz 40.0 1.40
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(a) (b)

Figure 4. Two different head models: (a) SAM phantom head and
(b) HUGO human body model at a resolution of 1mm.

2.3. Setups and Results of Metal-frame Spectacles

As mentioned, a scenario was considered in which the incoming radio
signal was in a line-of-sight path to a stationary head (frontal face)
in free space. Figure 5 illustrates this scenario. Notice that all of the
SAR simulations were performed in the frontal face, as would be the
case during texting or using various applications.

2.3.1. Phase 1: A Metal Rod as Simple Metal-frame Spectacles

A straight, 2-mm diameter metal rod as simple, metal-frame spectacles
and a dipole were aligned horizontally. Two sets of dipole antennas,
which were designed earlier for GSM applications and were operated
at 900 MHz and 1800MHz, were used in separate simulations. For the
parametric studies, the locations of the dipole antennas with respect to
the surface of the SAM were fixed, and only the length of the rod and
the distance of its horizontal separation from the SAM were varied.
The purpose of this stage was to study the optimum length of the
metal rod that would inflict the maximum SAR at both frequencies.

Figure 6 shows the results of parametric studies of the maximum
SAR1 g at 900 MHz and 1800 MHz. The averaging over a 10-g mass of
tissue is not shown because the purpose of this in this stage was only
to find the optimum length and other parameters. Mass averaging will
give approximately the same result. Notice that the maximum SAR
without the metal rod was located at the tip of the nose, whereas the
maximum SAR was located behind the rod when it was in the frontal
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(a)

(b)

Figure 5. Position of the dipole antenna and metal rod in simulation:
(a) top view; (b) side view. The positions are as follows: horizon
distances from the dipole to the tip of the nose, m = 80 mm, and
vertical distances from the tip of the nose to dipole or metal rod,
n = 44 mm.

Table 3. Relationships between the ranges of optimum length that
caused the maximum SAR to the SAM compared to the length of the
dipole.

Length
Frequency (MHz)

900 1800
Optimum Metal Rod (mm) 131–160 65–79

Dipole (mm) 151.66 72.66

face. Table 3 summarizes the range of optimum length that resulted
in the maximum RF energy absorption by the head.

From Table 3, when the length of dipole within the range of
optimum metal rod length, the maximum SAR was found around
the eyebrow and the nose. The range separation distance between
SAM and the rod for 900 MHz that ranged from approximately 2.5 to
8mm caused the large SAR. The highest SAR was observed at 7 mm
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(a) (b)

Figure 6. SAR1 g (W/kg) with increasing length of the metal
rod and separation distance from SAM surface at (a) 900 MHz and
(b) 1800 MHz.

(c)

(a) (b)

Figure 7. Diagram of front view half rim metal spectacles: (a) actual
and (b) after being modeled in the simulation; (c) perspective view of
the model.

with a rod length of 150 mm. However, for 1800 MHz, the maximum
SAR observed occurred when the rod length was approximately 70 mm.
This observation held for both frequencies. The results of this stage
proved that a different metal object could resonate again even if the
first resonator was transmitting from a safe separation distance. These
results led us to the second stage of the study in which we modeled
the actual metal spectacles.
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Figure 8. Diagram of SAM phantom head-worn, metal-frame
spectacles replaced the metal rod exposed to RF radiation from the
dipole antenna in the frontal face.

2.3.2. Phase 2: Model Based on the Frame of the Actual Spectacles

The frame of spectacles was modeled carefully by CST MWS using a
grid technique to ensure that its dimensions and shape were similar to
the actual values and could be fitted to the head model. The distance
from the center of the phantom surface to the center of the spectacles
was 25mm. The illustrations of the metal spectacles for both the
model and the actual spectacles are shown in Figure 7. In this section,
the model was used to replace the metal rod. The location of SAR
then was plotted in SAM to observe how the absorption pattern was
affected by the realistic model of the frame. The lens and arms were
less important [2].

Figures 9(c) and (d) show the SAR averaging over a mass of 1 gram
and 10 grams for 900 MHz. The results obtained from the simulated,
realistic, metal-frame spectacles showed that a large amount of RF
energy was absorbed focally from the top of the eyebrow area to the
eyelid region. This possibly caused the absorption of RF energy by
the eye. In Figure 9(d), the same effect was found for 10-gram mass
averaging.

For both instances of mass averaging, using the 1800-MHz
radiation source gave almost no absorption by the eye, but most of the
radiation was absorbed by the nose as shown in Figure 10. The SAR
values were lower than when the 900-MHz source was used. Thus, the
results indicated that the metal object resonated within its specific
length range. Within these ranges, the maximum SAR might be
obtained. The ranges are shown in Table 3.
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(a) (b)

(c) (d)

Figure 9. Simulation results at 900 MHz of SAM head without the
spectacles for (a) SAR1 g and (b) SAR10 g and SAM head worn the
spectacles for (c) SAR1 g and (d) SAR10 g.

2.3.3. Simulation on Realistic Human Head Simulation (HUGO) at
900MHz

Figure 11 shows the cross-sectional view of HUGO human head
simulated over 1 gram mass and 10 gram mass. Each tissue has its
own electrical parameter, as discussed in Section 2.2.

For this stage, only a frequency of 900MHz was used as the
radiation source. The frequency of 1800 MHz was not used because
the length of the spectacles’ frame was far beyond the optimal length,
as discussed earlier in Section 2.3.1. The SAR values expected could
be much higher if the spectacles’ length were reduced within the range
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(a) (b)

(c) (d)

Figure 10. Simulation results at 1800 MHz of SAM head without the
spectacles for (a) SAR1 g and (b) SAR10 g and SAM head worn the
spectacles for (c) SAR1 g and (d) SAR10 g.

of 65 to 75 mm. However, in the current situation, it is not possible
for the spectacles’ frame size because we must be able to fit the frame
to the head model.

Figures 12(a) and (b) show the vertical cross-sectional view. The
cross-section is focused on the eye region to observe the possibility of
absorption by the eye. As can be seen the HUGO eye is covered by
the eyelid, but, from the results here there is still some RF energy that
was able to penetrate into the eye and brain. The averaging of 10 g
of mass was used in this simulation due to the same location of the
absorption for both averaging as in Figure 11.

In Figure 11, the maximum SAR was plotted only when it
was close to the spectacles’ frame. In order to observe how deep
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(a) (b)

Figure 11. Cross-sectional view of contour plot for (a) 1 g and (b)
10 g SAR patterns inside HUGO head.

(a) (b)

Figure 12. Cross-sectional view of HUGO head in eye area exposed
to the 900MHz source.

the penetration was, the HUGO was cut into horizontally from the
forehead to the nose. Figure 13 summarizes the penetration in six
horizontal cross-sections of the HUGO.
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(a) (b)

(c) (d)

(e) (f)

Figure 13. Six horizontal cross sections of the HUGO in six to observe
SAR10 g in the eye.

3. ANTENNA GAINS AND SAR LEVELS AT 900 MHz

For this parametric study, the SAM head was used to decrease the
duration of the simulation. Moreover, the SAM was geometrically
symmetrical from left to right. Unlike HUGO, the whole body was
asymmetrical for the left and right parts. The distance of the antenna
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from the metal-frame spectacles varied with the fixed spectacle frame
located at 25 mm from the surface of the SAM. Notice here that all
models and other electrical conductivity parameters are the same as
they were in the previous simulation in order to allow a comparison of
the results.

Figure 14 shows the changes of the gain (dipole antenna) for
three different situations, i.e., 1) spectacle frame exposed by dipole
(spectacle only), 2) SAM phantom head exposed by dipole (head only),
and 3) SAM phantom head worn spectacles’ frame exposed by dipole.

Antenna Gain Versus Distance from Head
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Figure 14. Results of antenna gain for three different situations
of exposure at 900 MHz with varied distance between dipole and
spectacles’ frame.
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Figure 15. Result of the SAR averaged over (a) 1 g and (b) 10 g
mass tissue with increasing distance between the head model and the
spectacles (mm).
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Only the 900-MHz dipole was used for this analysis, as discussed in
the previous section. From the results, both head only and head and
spectacle decreased to negative gains for distances from 0–5mm.

The highest gain was obtained when the SAM was removed. From
the plot, the maximum gain of more than 6 dBi was obtained between
5 and 55 mm. From Table 1, it was known that the gain of the initial
dipole before any RF interactions occurred was 2.3 dBi. However, in
the presence of the SAM, the maximum gain of the antenna gain was
changed.

Figures 15(a) and (b) show the SAR averaged over tissue mass
with increasing distance between the spectacles’ frame and the antenna

(a) (b)

(c)

Figure 16. Theta cut at 90 degrees of 900 MHz radiation patterns
for three different situations: (a) spectacles only; (b) head only; and
(c) spectacles on head.
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for 1 gram and 10 grams, respectively. Location of the metal-frame
(spectacles) was still at 25mm from the surface of the SAM. The
comparison of the magnitudes of SAR with and without wearing
the metal-frame spectacles shows that, by placing the radiation
source really close (< 10mm) to the spectacles’ frame, the maximum
magnitude (> 1.6W/kg) was produced inside the SAM head for 1 gram
averaging. The same situation was observed from the results of 10 gram
SAR. The SAR values for both 1 g and 10 g were reduced significantly
at 10 mm and greater (distance between dipole and the spectacles) even
by the wearing metal-frame spectacles.

To verify the changes of antenna gain, radiation pattern (polar
plot) with theta cut at 90 degrees was performed for three different
situations by increasing the distance between the antenna and the
spectacles. Compared to the radiation pattern without exposure
to anything, as in Figure 3, the exposed radiation pattern showed
significant changes in the pattern. The head with and without
spectacles showed slight changes of magnitude and main lobe compared
to results for the head removed. Figure 16 shows the polar plot. This
could explain the basis of SAR changes with variations in the antenna
gain.

4. CONCLUSIONS

In this study, the simulations were performed with dipole antennas
and it is not directly to extrapolate from the dipole study to a real
phone situation, where the return loss, radiation pattern, gain and
efficiency is different and the results can be also very different to
results obtained in this study. The simulations were performed by
varying many parameters that might possibly inflict increased energy
absorption from a radiating source to the frontal part of the human
head. The simulations were conducted using a symmetrical phantom
head and actual tissues base head model. The results confirmed that
significant increases of the SAR occurred in the region of the eyes and
in certain parts of the head if the user wore metal-frame spectacles
when actively using the communication device in frontal head or face
areas at 900 MHz. However, at the 1800 MHz range, small spectacles
worn by children might increase the absorption to their head by the
same phenomenon.

As long the metal-frame spectacles are beyond the resonant
frequency range, the absorption rate will be not significant.
Furthermore, from the analysis of antenna gain, the absorption of RF
energy increased enormously only if the spectacles were really close to
the antenna, i.e., 5-mm spacing between the antenna and dipole. As far
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as we understood, by holding the communication device far from the
head, the rate of energy absorption could be decreased, but, for some
situations in which a metal object was present, users should consider
using the device at a safe distance from their head and face. In the
situation in which a user uses a smart phone really close to metal-frame
spectacles, perhaps in speaker-phone mode, the SAR value might be
increased. By studying the optimum absorption of RF energy by the
human head, it will be possible to investigate the mechanism that
changes the SAR in the head when metal spectacles are added. Even
though there is still a lot of disagreement about the danger level of
SAR, precautions should consider when designing and using an antenna
for mobile communications.
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