PERFORMANCE EVALUATION OF THREE PHASE INDUCTION MOTOR USING ROTOR FRAME 0.35 mm AND 0.50 mm OF NON-ORIENTED STEEL SHEETS

VANAWATI BINTI VAHYA

UNIVERSITI MALAYSIA PERLIS 2012

PERFORMANCE EVALUATION OF THREE PHASE INDUCTION MOTOR USING ROTOR FRAME 0.35 mm AND 0.50 mm OF NON-ORIENTED STEEL SHEETS

YANAWATI BINTI YAHYA (0930910375)

by price

A thesis submitted In fulfillment of the requirement for the degree of Master of Science (Electrical Systems Engineering)

School of Electrical Systems Engineering UNIVERSITI MALAYSIA PERLIS

2012

UNIVERSITI MALAYSIA PERLIS

Author's full name	:	YANAWATI BINTI YAHYA
Date of birth	:	8 JULY 1979
Title	:	Performance Evaluation of Three Phase Induction Motor Using
		Rotor Frame 0.35 mm and 0.50 mm of Non-Oriented Steel
		Sheets
Academic Session	:	2009-2011
I hereby declare that	the thes	sis becomes the property of Universiti Malaysia Perlis (UniMAP)
and to be placed at th	ne librar	y of UniMAP. This thesis is classified as:
		orre
CONFIDENT	ΓIAL	{Contains confidential information under the Official Secret
		Act 1972}
RESTICTED	~	Contains restricted information as specified by the
	. 59	organization where research was done}
2		
OPEN ACCE	ESS	I agree that my thesis is to be made immediately available as
		hard copy or on-line open access (full text)
©		

I, the author, give permission to the UniMAP to reproduce this thesis in whole or in part for the purpose of research or academic exchange only (except during a period of _____ years, if so requested above).

Certified by:

SIGNATURE Yanawati Binti Yahya IC. NO: 790708-13-5090 Date: SIGNATURE OF SUPERVISOR Prof. Dr. Ismail Bin Daut

Date:

ACKNOWLEDGEMENT

Alhamdulillah with His blesses and all thanks are to God for the opportunity and the strength He gave me to study towards my masters. I would like to express my gratitude to several people and few organizations because of the willingness for lending me hands and spontaneously supported me in order to complete my master successfully.

The author expresses her gratefulness first and foremost to the superb mentor and would like to state her boundless appreciation and warmest gratitude to supervisor Prof. Dr. Ismail bin Daut for their valuable supervision, continuous encouragement, inspiring suggestion, and guidance in the research and in the preparation of this thesis. I have furthermore to thank Mrs Siti Rafidah Binti Abdul Rahim, project's co-supervisor and Mr. Gomesh Nair A/L Shasidharan who encouraged me to go along in this project. They provided the author with great opportunity and allowed her to go in depth in the areas of induction motors and machine design. Their motivation, advice, encouragement and many discussions have helped the author for the completion of the research and this master's thesis. Also not to be forgotten to the rest staff who have giving me a very good cooperation for the completion of the project. There are too many new experiences that I have learned through this period of finishing the project. I really appreciated all the support that have been done to make this project goes well. Not forgetting to the members of my Induction Motor research group Pungut Ibrahim, Gomesh Nair, Nor Shafiqin, Syatirah, Mastika, and Mohd Asri, for their help, encourage, support and donating their time during my research. I am indebted to the technicians, fellow masters and PhD companion in the Electrical Energy and Industrial Electronic Systems Cluster. They have opened their hearts and shared important knowledge in completing my research thesis. My stay at the laboratory has indeed provided me wonderful memories as well as adequate information.

My outmost gratitude and apologies I convey to my family for they have sacrificed their life and happiness in enduring many months of separation in my absence. I thank them again for being the pillar of strength and a constant source of encouragement in my quest to pursue my peculiar endeavours. For all those whom I may not mention here I apologise and thank everyone who has been a part of my success.

TABLE OF CONTENTS

Page

APP	ROVAL AND DECLARATION SHEET	ii
ACK	KNOWLEDGMENT	iii
TAB	BLE OF CONTENTS	iv
LIST	Γ OF TABLES	ix
LIST	Γ OF FIGURES	xi
LIST	Γ OF ABBREVIATIONS	xvi
ABS	TRAK	xvii
ABS	TRACT	xviii
CHA	APTER 1 AIM OF THE INVESTIGATION	1
	0	
CHA	APTER 2 INTRODUCTION OF ROTATING MACHINE	
2.1	Introduction of Rotating Machine	3
2.2	Background of Three Phase (3) Induction Motor	5
2.3	Rotor Fabrication with Manufacturing Aspect	5
2.4	Type's of Rotor and Stator	8
	THIS	
CHA	APTER 3 MAGNETIC PROPERTIES AND LOSSES	
3.1	Magnetic Properties of Non Oriented Electrical Steel (Non grain)	10
3.2	Improving the magnetic efficiency	13
3.3	The characteristics of materials for rotating machine	15
3.4	Domain structure and hysteresis loop	16
	3.4.1 Hard magnetic materials	22
	3.4.2 Soft magnetic materials	23

3.5	Materi	al Properties of copper for Rotating Machine	24
	3.5.1	Properties: Physical	25
	3.5.2	Properties: Mechanical	26
3.6	Losses	s Mechanism	26
3.7	Thickr	ness assessment	27
	3.7.1	Magnetic testing	29
3.8	Eddy (Current Loss	30
3.9	Econo	mical Aspect of AC Induction Motor	31
	3.9.1	Economical Considerations	31
	3.9.2	Standard Efficient Motor	33
	3.9.3	Energy Saving Aspect	34
		C.C.C.	
CHAP	TER 4	MODELING OF INDUCTION MOTOR VIA FEM	
4.1	Desigr	Modeling of Induction Motor Using FEM Software	36
4.2	FEM I	Design of Induction Motor	37
4.3	FEM N	Model Solvers	39
4.4	Build	Complete Model	40
4.5	Steps f	for designing the induction motor	41
	4.5.1	Specifying the model's general characteristics	41
	4.5.2	Specifying the rotor's characteristics	43
	4.5.3	Specifying the stator's characteristics	45
	4.5.4	Specifying the coil winding's characteristics	46
4.6	Genera	ating Results	48
	461	Generating a Namenlate for the motor	48

	4.6.2	Generating an Equivalent Circuit	50
	4.6.3	Generating a Result Summary	51
	4.6.4	Generating a Torque vs Speed curve at various speeds using the	
		Equivalent Circuit Analysis method	52
	4.6.5	Generating several Loss quantities using the Equivalent Circuit	
		Analysis method	54
	4.6.6	Generating a field plot for Current density	56
		000	
CHA	APTER 5	5 HARDWARE EXPERIMENT ON INDUCTION MOTOR	
5.1	Exper	imental Procedure	59
	5.1.1	No-Load Test	59
	5.1.2	Separating Friction and Windage Loss	62
	5.1.3	DC Resistance Test	64
	5.1.4	Blocked Rotor Test / Locked-rotor Test	66
	5.1.5	Efficiency Estimation and Loss Segregation Method	68
	5.1.6	Nominal Power Loss Test	69
5.2	Induct	tion Motor Copper Rotor Construction	71
	5.2.1	Design model by FEM and AutoCAD Software	71
	5.2.2	Lamination of Block Rotor	72
	5.2.3	Cutting Block Rotor by EDM Wire Cut Machine	74
	5.2.4	Construct the Lamination to The Rotor Frame	77
	5.2.5	Assemble rotor bar and end ring by Using Copper Rod & Plate	78
	5.2.6	Assemble Shaft	79

CHAPTER 6 RESULTS AND DISCUSSION

6.1	Comp	arison of FEM Model 0.35 mm & 0.50 mm Thickness	
	Rotor	Frame	80
	6.1.1	Equivalent Circuit Analysis	80
	6.1.2	Efficiency	86
	6.1.3	Power factor	88
	6.1.4	Magnetic Flux Density (B)	89
	6.1.5	Eddy Current Loss fields	91
6.2	Nomi	nal Power Loss	93
	6.2.1	Nominal Power Loss of two different thickness of Non-oriented	
		electrical steel (0.35 mm & 0.50 mm) at the Different Angle	93
	6.2.2	Nominal Power Loss of Non Grain Oriented Steel	
		Magnetised at 1 T-1.8 T	95
6.3	Labor	atory Experiments	97
	6.3.1	No Load Test Analysis	97
	6.3.2	Separating Friction and Windage Losses	97
	6,3.3	DC Resistance Test Analysis	100
	6.3.4	Block-Rotor Test / Locked-Rotor Test Analysis	102
	6.3.5	Comparison of losses between two different thicknesses	
		0.35 mm & 0.50 mm	103
6.4	Econo	mical Aspects Based on Experiments	105
	6.4.1	Annual Energy Savings (AES)	106
	6.4.2	Total Saving Cost (TSC)	107

CHAPTER 7 CONCLUSION AND FUTURE RECOMMENDATION

7.1	Conclusion	109
7.2	Future Recommendation	111
DEE	DENCES	110
APPI	ENDIX A: PUBLICATIONS (JOURNALS & PAPERS) & AWARDS	112
APPI	ENDIX B: AutoCAD DRAWING	125
APPI	ENDIX C: CONSTRUCT THE BLOCK ROTOR	139
APPI	ENDIX D: EDM WIRE CUT	145
APPI	ENDIX E: PARAMETER CALCULATION	165
APPI	ENDIX F: MALAYSIA ELECTRICITY RATES	167
	O THIS HEM IS Prot	

LIST OF TABLES

Tables No.		Page
3.1	Selection of electrical steel grades produced by European	16
	Electrical Steels – typical properties	
3.2	Comparison magnetic properties between soft and hard	22
	magnetic materials	
3.3	Magnetic Properties after Intermediate Annealing at 1050°C	28
4.1	The Design Specification for Both Thicknesses of Materials	37
4.2	Modification data from The Model's general characteristics	42
	for Induction Motor	42
4.3	Modification data from The Rotor characteristics for	11
	Induction Motor	44
4.4	Modification data from The Stator characteristics for	16
	Induction Motor	+0
4.5	Modification data from The Coil winding's characteristics	47
	for Induction Motor	
6	DATA OF 0.35 mm FROM AC ANALYSIS	81
6.2	DATA OF 0.50 mm FROM AC ANALYSIS	82
6.3	The Effect of Different Angle of Magnetisation for two	
	different thickness of Non oriented electrical steel (0.35 mm	94
	& 0.50 mm) on Nominal Power Loss	
6.4	No-Load Test Data for 0.5 HP Induction Motor with 0.35	00
	mm Thickness.	98

6.5	No-Load Test Data for 0.5HP Induction Motor with 0.50	00
	mm Thickness.	98
6.6	DC Resistance Test for Both Thicknesses of Material	101
6.7	No load Losses for Both Thicknesses with Copper Rotor Bar	101
6.8	Blocked Rotor Test for Both Thicknesses with Copper Rotor	102
	Bar	102
6.9	Rotor Loss for Both Thicknesses with copper rotor bars	103
6.10	Loss Comparison for both thicknesses of material	103
6.11	Comparison of Software Simulation and Hardware	105
	experiment	105
6.12	Comparison of Energy and Money saving for both	108
	thicknesses of material	100
	x otes	
	· 5 P	
	. Ken	
	is'	
©		

х

LIST OF FIGURES

Figures No. 2.1	Typical speed-torque characteristics for Design A, B, C,	Page 7
	and D motors	
2.2	Type's of Rotor Slot	9
2.3	Type's of Stator Slot	9
3.1	Phase transformer field lines (No Load, Phase 30°)	11
3.2	Pole induction motor field lines	12
3.3	Grain-oriented has lower losses than Non-oriented (blue)	13
	in the longitudinal (L) sense, but higher in the transverse	
	direction v	
3.4	Domain Wall Structure of Non Grain Oriented Electrical	17
	Steel	
3.5	Magnetostatic Interaction between Grains of Non Grain	18
	Oriented Electrical Steel Material	
3.6	Magnetic flux density versus magnetic field strength	18
3.7	Hysteresis loops for soft and hard magnetic materials	21
3.8	The Power-Flow Diagram of Induction Motor	27
3.9	Relationship between density and the product of density	30
	and resistivity for steels with silicon and aluminium	
	contents up to 3%	
3.10	Sales of Electricity (GWh) by TNB in 2006	32
3.11	End-use electricity consumption in Malaysia Factories	33

4.1	The FEM interface for Induction Motor	37
4.2	Induction Motor Rotor and Stator Design Specifications	38
4.3	Rotor Bars type for Analysis	38
4.4	The view of Stator & Stator slots, Rotor & Rotor bars and	39
	Air Gap	
4.5	The Model's general characteristics for Induction Motor	42
4.6	The Rotor characteristics for Induction Motor	44
4.7	The Stator characteristics for Induction Motor	45
4.8	The Coil winding's characteristics for Induction Motor	47
4.9	The design of The Coil winding's for Induction Motor is	48
	complete	
4.10	Nameplate "Performance Tables" From Motor Explorer's	49
	Results page	
4.11	Nameplate for 0.35 mm thickness of Non Oriented	49
	Electrical Steel Material	
4.12	Equivalent Circuit Button	50
4.13	Equivalent Circuit for 0.35 mm thickness of Non Oriented	50
0	Electrical Steel Material	
4.14	Summary Button	51
4.15	Summary Performance Charts for 0.35 mm thickness of	52
	Non Oriented Electrical Steel Material	
4.16	Equivalent Circuit Analysis Button	52
4.17	The Input panel General Torque setting in Equivalent	53

circuit analysis for 0.35 mm thickness of Non Oriented Electrical Steel Material

4.18	Equivalent Circuit Analysis Charts on Torque for 0.35	54
	mm thickness of Non Oriented Electrical Steel Material	
4.19	Equivalent Circuit Analysis Button	54
4.20	The Input panel General Several Loss setting in	55
	Equivalent circuit analysis for 0.35 mm thickness of Non	
	Oriented Electrical Steel Material	
4.21	Equivalent Circuit Analysis Charts on Losses for 0.35 mm	56
	thickness of Non Oriented Electrical Steel Material	
4.22	Instantaneous Fields Button	56
4.23	The Input panel General Instantaneous Fields setting in	57
	Equivalent circuit analysis for 0.35 mm thickness of Non	
	Oriented Electrical Steel Material	
4.24	Instantaneous fields Charts on Current density – Phase for	58
	0.35 mm thickness of Non Oriented Electrical Steel	
\odot	Material	
5.1	No-Load Test of Induction Motor	60
5.2	Induction Motor Equivalent Circuit	61
5.3	Induction Motor Equivalent Circuit for no-load test	62
5.4	No-Load Test of Induction Motor	62
5.5	Separating Friction and Windage Loss Graph	63
5.6	DC Resistance Test of Induction Motor	64

5.7	DC Resistance Test Setup	65
5.8	Blocked-Rotor Test Setup for Induction Motor	66
5.9	Blocked Rotor Test or Locked-Rotor Test	67
5.10	Blocked-Rotor Test Circuit	68
5.11	Iron Loss Tester Set Up	69
5.12	Circuit Diagram of Epstein Test	70
5.13	The Angle for the Nominal Loss Test at Non Grain	70
	Oriented and Grain Oriented Steel Strip	
5.14	Rolling and Transverse Direction at the Non Grain	71
	Oriented Steel Strip	
5.15	AutoCAD model for both of thicknesses	72
5.16	The Lamination of non grain steel in the Block size	73
5.17	The Block Rotor in Grinding process	73
5.18	Milling Process using Milling Machine	74
5.19	EDM Wire Cut Machine	75
5.20	Sample of wire cut roll	76
5.21	Non Oriented Electrical Steel Strip after Cutting Process	77
_	for both thickness	
5.22	Non Oriented Electrical Steel Strip after Welding Process	77
	for both thickness	
5.23	Copper Rods after Milling Process	78
5.24	Copper Plates after Complete Installation of End Ring at	78
	Both Side of The Rotor Frame	

5.25	Copper Rotor for both thickness of Induction Motor.	79
5.26	Copper Rotor Assembled into the Induction Motor	79
6.1	Torque vs. Speed for both thicknesses of material	84
6.2	Loss vs. Speed for both thicknesses of material	86
6.3	Efficiency vs. Speed for both thicknesses of material	87
6.4	Power factor vs. Speed for both thicknesses of material	88
6.5	Flux Density – In Phase Component	90
6.6	Lamination Eddy Current Loss – Hysteresis Loss	92
6.7	Nominal Power Loss for two different thickness of Non	95
	oriented electrical steel (0.35 mm & 0.50 mm) magnetised	
	at 1.5 T	
6.8	Nominal Power Loss of Non Grain Oriented Steel at	96
	Rolling and Transverse Direction	
6.9	Separating Friction and Windage Loss for 0.35 mm	99
	Thickness with Copper rotor bars.	
6.10	Separating Friction and Windage Loss for 0.50 mm	100
\odot	Thickness with Copper rotor bar.	
6.11	Graph of Segregated Losses between two thicknesses of	104
	material with copper rotor bar.	

LIST OF ABBREVIATIONS

В	Magnetic Flux Density
Н	Magnetic Field Intensity
DC	Direct Current
AC	Alternating Current
HP	Horse Power
IEEE	Institute Electric and Electronic Engineering
IEC	International Electrotechnical Commission
EDM	Electrical Discharge Machining
FEM	Finite Element Method
LF	Load Factor
ASD	Adjustable Speed Drive
NEMA	National Electrical Manufacturers Association
TNB	Tenaga Nasional Berhad
SESCO	Sarawak Electricity Supply Corporation
SESB	Sabah Electricity Supply Sendirian Berhad
SEU	Energy Consumed per unit physical product
AES	Annual Energy Saving
TCS	Total Cost Saving

В

Penilaian Prestasi Motor Induksi Tiga Fasa Dengan Kerangka Pemutar Kepingan

Keluli Tak Berorentasi 0.35 mm Dan 0.50 mm

ABSTRAK

Dalam tesis ini, motor aruhan arus ulang alik tiga fasa telah di kaji dengan teliti dan dianalisa pada aspek parameter, kecekapan, faktor kuasa dan kehilangan kuasa yang berlaku pada motor aruhan ulang alik tiga fasa. Sepanjang projek ini, perbandingan dibuat terhadap prestasi motor aruhan tiga fasa yang di reka bentuk dan dimodelkan dengan menggunakan dua (2) ketebalan kepingan steel yang berbeza, 0.35 mm dan 0.50 mm berasaskan bahan-bahan yang tidak berorientasikan keluli elektrik dengan saiz rotor bar 10 mm. Bahagian pertama perbandingan dilakukan dengan simulasi menggunakan Perisian FEM. Keputusan dari perisian FEM dibandingkan dari segi kehilangan kuasa, ketumpatan fluks magnet, ketumpatan arus pusar, tork vs kelajuan, kehilangan kuasa vs kelajuan, kecekapan vs. Faktor kelajuan dan kuasa vs kelajuan. Bahagian kedua ialah perbandingan antara dua (2) rotor sebenar yang direka dengan saiz daripada kepingan steel dengan ketebalan 0.35 mm dan 0.50 mm masing-masing. Saiz bar pemutar untuk kedua-dua rotor ialah 10 mm. Dalam bahagian ini, kedua-dua pemutar, telah diuji dengan ujian tanpa beban, ujian pemutar disekat, dan kaedah ujian rintangan arus terus (AT) untuk mendapatkan perbezaan kecekapan, kehilangan dan faktor kuasa. Eksperimen keseluruhan iaitu menggunakan perisian FEM dan pemutar yang dibina, keputusan menunjukkan bahawa pemutar dengan ketebalan kepingan steel 0.35 mm meningkatkan kecekapan sebanyak 1.4% dan mengurangkan kerugian sebanyak 13.27 watt berbanding dengan pemutar dengan ketebalan kepingan steel 0.50 mm. Dari aspek ekonomi adalah didapati bilangan tenaga dan wang yang boleh dijimat dengan mengantikan pemutar 0.50 mm dengan pemutar 0.35 mm. Dari segi penjimatan tenaga tahunan (AES) dan penjimatan jumlah kos (TCS), pemutar yang berketebalan 0.35 mm mampu menjimatkan 40.32 kWh untuk setahun dan dengan nilai sebanyak RM 13.54 untuk satu motor setahun. Akhir sekali, satu anggaran kasar dibuat untuk penjimatan 100, 000 biji motor aruhan yang telah digantikan dengan pemutar yang berketabalan 0.35 mm dan menunjukkan sebanyak RM 1.35 juta boleh dijimatkan setahun.

Performance Evaluation of Three Phase Induction Motor Using Rotor Frame 0.35 mm and 0.50 mm of Non-Oriented Steel Sheets

ABSTRACT

In this project, the three phase AC induction motor have been thoroughly investigated and analyzed in terms of the induction motor parameter, efficiency, power factor and loss segregation. Throughout this project, the performance of the three phase induction motor when it design and modeling by using two (2) different thickness, 0.35 mm and 0.50 mm, of non grain oriented electrical steel sheets with 10 mm rotor bar size. The first part of comparison is done with simulation using FEM Software. The results from FEM Software were compared in terms of power loss, magnetic flux density, eddy current density, torque vs. speed, power loss vs. speed, efficiency vs. speed and power factor vs. speed. The second part is the hardware comparison between two (2) fabricated rotors with sizes of lamination thicknesses 0.35 mm and 0.50 mm respectively. The size of rotor bars for both rotors is 10 mm. In this part, the two (2) different thicknesses for rotor frame were tested with no load test, blocked rotor test, and direct current (DC) resistance test methods to obtain the difference of efficiency, losses and power factor improvement. From the overall experiment of software and hardware, results shows that 0.35 mm thickness rotor does increase the efficiency by 1.4% and reduce losses by 13.27 watts compared to 0.50 mm rotor. An economical aspect is presented to show the amount of energy and billing that can be saved from replacing the 0.50 mm with the 0.35 mm rotor lamination steel. As for the annual energy saving (AES) and total cost saving (TCS), the 0.35 mm lamination thickness rotor manage to save 40.32 kWh per year and utility billing by RM 13.54 per year per motor. Finally a rough estimation of 100,000 pieces induction motor that have been replaced with the 0.35 mm thickness for rotor frame is assumed and shows that it will save approximately RM 1.35 million per year.

CHAPTER 1

AIM OF THE INVESTIGATION

An induction motor is sometimes called a rotating transformer because the stator is essentially the primary side of the transformer and the rotor is the secondary side. Induction motors are widely used, especially poly-phase induction motors, which are frequently used in industrial arena (Theraja, B.L. & Theraja, A.K., 1998).

The induction motor machine is an important class of electric machines which finds wide applications. More than 85% of industrial motors in use today are in fact induction motors. Induction motors are complex electromechanical devices utilized in most industrial applications for the conversion of power from electrical to mechanical form. Three phase induction motor are used because it is simple, rugged, low price, and easy to maintain. They run at essentially constant speed from zero to full-load (Theodore, W., 2006).

Induction machines represent a class of rotating apparatus that includes induction motors, induction generators, induction frequency converters, induction phase converters, and electromagnet slip couplings. Induction motors can be used effectively in all motor applications, except where very high torque or very fine adjustable speed controller is required. Induction motors can range in size from fractional horsepower to more than 100 000 horsepower. They are more rugged, simplest, require less maintenance, and are less expensive than direct-current motors of equal power and speed ratings (Charles I. Hubert P.E, 2002)

The aim and objective of this research is to investigate the performance of AC induction motor using different thickness of steel sheets which are 0.35 mm and 0.50 mm based on losses and efficiency. The investigation involved a study to assess the effect of an induction motor's efficiency (3 phase/4 pole/10 rotor bar slots). The first stage of the research involves designing and simulating the 0.5 HP three phase AC induction motor using FEM Software. From the simulation, analysis such as power loss, magnetic flux density, eddy current density, torque vs. speed, power loss vs. speed, efficiency vs. speed, and power factor vs. speed were done. A comparative study then carried out to know how the usages of different thicknesses of material influenced the performance of induction motor. The second stage is to construct a rotor frame for both thicknesses of the 0.5 HP induction motor. Laboratory tests, such as no load test, DC resistance test and block rotor test, are done to investigate in terms of its efficiency increment, power factor improvement and loss reduction capabilities. This is done, in order to determine the losses of the Induction Motor and to investigate the efficiency of three-phase induction motor of both thicknesses which are 0.35 mm and 0.50 mm.

CHAPTER 2

INTRODUCTION OF ROTATING MACHINE

2.1 Introduction of Rotating Machine

Francois Arago (1824) has developed the idea of rotating magnetic field and first implemented by Walter Baily. Nikola Tesla of United States conceived the principle of rotating magnetic field in 1882 which lead him to create the first brushless AC motor or induction motor in 1883. The induction motor was then understood and developed by Galileo Ferrari, in Italy in year 1885. In 1888, Ferraris published research in the paper Royal Academy of Sciences in Turin in which he detailed theoretical basis to understand how the motor operates. Separately, in the same year, Tesla raised U.S. Patent 381,968. Induction motor with a cage created by Mikhail Dolivo-Dobrovolsky about a year later (Chapman, S. J. (Ed.). (2005)).

Induction machines are rotating classes of apparatus including induction motor, induction generator, induction frequency converter, converters and electromagnetic induction phase slip coupling. Induction motor can be used effectively in all motor applications, except where the torque is very high or very finely adjustable speed control is required. They are more rugged, require less maintenance, and less expensive than direct current motors of the same power and speed ratings (Chapman, S. J. (Ed.). (2005)).

Induction motor requires transfer of energy from a stationary to a rotating member through electromagnetic induction. Rotating magnetic field which is generated by a stationary winding induces alternating emf and current in the rotor. The resultant rotor current-induced interaction with the rotating field winding produces a stationary motor torque (Akbaba, M., Taleb, M., & Rumeli, A. (1995)).

Induction motor has the same physical stator as a machine with different rotor construction. There are two different types of rotor induction motor can be placed in the stator. One is called the induction motor rotor cage, while the other is called the wound rotor. Cage induction motor rotor consists of a series of exercise bars set into the slot carved in the face of the rotor and shorted at the end of either the large bypass ring. This design is called a cage rotor induction motor as a conductor in which if examined, would seem like an exercise wheel for hamsters. Wound rotor induction motors are more expensive than a cage induction motor because it requires more maintenance due to wear associated with their brushes and slip rings. Due to this reason wound-rotor induction motors are seldom used (Bottauscio, O., Chiampi, M., Concari, C., Tassoni, C., & Zucca, M. (2008)).

According to Stranges, N. RDF (1994) when the machine rotates, the pattern of flux in the core can be very complex. Some sections of the core flux face rotation, especially at the back of the stator teeth and slots. The degree of polarization of the various flux densities may be encountered. Empirical scaling factor is often required in order to do damage predicted a loss normally found in a rotating machine (Stranges, N. RDF (1994)). An iron loss in the motor occurs due to the alternating, high frequency, and flux rotation (Findlay, RD. et al, 1994).

2.2 Background of Three Phase (3) Induction Motor

The most common type of three phase electric load is three phase electric motors. Three-phase motors are more compact and less expensive than single-phase motors of the same voltage class and rating. Three-phase induction motor has a simple design, is high starting torque, and efficiency. The motor that is used in industry are the three phase pumps, fans, blowers, compressors, delivery drivers, and other types of three-phase motor equipment. There are many benefits of using a three-phase electric motor rather than single phase electric motor. (Retrieved from: http://www.3phasepower.org/3phasemotors.htm).

When single-phase electricity is needed, it can be found between any two phases of three-phase system, or in some systems, between one phase and ground. By using three-conductor, three-phase system can provide 173% power for more than two conductors per phase system. Three-phase power allows heavy duty industrial equipment to operate more smoothly and efficiently. Three-phase power can be transmitted over long distances with smaller conductor size (Retrieved from http://www.3phasepower.org/3phasemotors.htm).

2.3 Rotor Fabrication with Manufacturing Aspect

Challenges faced during the used of different rotor material are during the starting, this is due to the motor is subjected to extreme operating conditions. During this period, the rotor cage will reach its thermal limit before the stator winding. It is during this operation that requires a high conductivity material such as copper which can offer greater range of higher resistivity and higher thermal margin. Copper also provides a lower coefficient of