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Abstract: Stuttering assessment through the manual classification of speech disfluencies is subjective, inconsistent,

time-consuming, and prone to error. The aim of this paper is to compare the effectiveness of the 3 speech feature

extraction methods, mel-frequency cepstral coefficients, linear predictive coding (LPC)-based cepstral parameters, and

perceptual linear predictive (PLP) analysis, for classifying 2 types of speech disfluencies, repetition and prolongation,

from recorded disfluent speech samples. Three different classifiers, the k-nearest neighbor classifier, linear discriminant

analysis-based classifier, and support vector machine, are employed for the classification of speech disfluencies. Speech

samples are taken from the University College London Archive of Stuttered Speech and stuttered events are identified

through manual segmentation. A 10-fold cross-validation method is used for testing the reliability of the classifier results.

The effect of the 2 parameters (LPC order and frame length) in the LPC- and PLP-based methods on the classification

results is also investigated. The experimental results reveal that the proposed method can be used to help speech

language pathologists in classifying speech disfluencies.

Key words: Disfluent speech, mel-frequency cepstral coefficient, linear predictive coding, perceptual linear predictive

analysis, support vector machine

1. Introduction

Humans use speech as a verbal means to express their feelings, ideas, and thoughts in communication. In

this world, there is 1% of the population having the problem of speech disfluency, and it has been found to

affect females and males at a ratio of 1:3 or 1:4 [1,2]. Disfluency and stuttering are a break or interruption

of normal speech, such as repetition, prolongation, or interjection of syllables, sounds, words, or phrases, and

involuntary silent pauses or blocks in communication [1,3]. Stuttering cannot be completely cured, although

it may go into remission for some time [1]. Stutterers can learn to shape their speech into fluent speech with

the appropriate speech pathology treatments. Therefore, a stuttering assessment is needed to evaluate the

performance of stutterers before and after therapy. Traditionally, a speech language pathologist (SLP) counts

and classifies the occurrence of disfluencies, such as repetition and prolongation, in stuttered speech manually.

However, these types of stuttering assessment are subjective, inconsistent, time-consuming, and prone to error

[1,4–8]. Therefore, it might be good if stuttering assessment can be done through classification of disfluencies

using digital signal processing (DSP) and artificial intelligence (AI) concepts. In the last 2 decades, researchers

have focused on developing objective methods using DSP and AI concepts to assist the SLP during stuttering
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assessment. Table 1 depicts some of the significant research works on the automatic classification of speech

disfluencies and/or stuttering recognition.

Table 1. Summary of several research works on stuttering recognition.

First author Database Features Classifiers Best results (%) 

Howell [3] - 
Autocorrelation function and 

envelope parameters 

Artificial neural 

networks (ANNs) 
Approximately 80 

Howell [4–5] 12 speakers (UCLASS) 

Duration, energy peaks, 

spectral of word based and 

part word based 

ANNs 78.01 

Nöth [6] 37 speakers 

Duration and frequency of 

dis"uent portions, speaking 

rate 

Hidden Markov models 

(HMMs) 
- 

Geetha [8] 51 speakers 

Age, sex, type of dis"uency, 

frequency of dis"uency, 

duration, physical 

concomitant, rate of speech; 

historical, attitudinal, and 

behavioral scores; family 

history 

ANNs 92 

Czyzewski [10] 

6 normal speech samples 

+ 6 stop-gap speech 

samples 

Frequency, 1st to 3rd 

formant’s frequencies and its 

amplitude 

ANNs and rough set 73.25 and ≥90.0 

Prakash [11] 
10 normal + 10 

stuttering children 

Formant patterns, speed of 

transitions, F2 transition 

duration, and F2 transition 

range 

- - 

Szczurowska [12] 8 speakers 
Spectral measure [fast Fourier 

transform (FFT) 512] 

Multilayer perceptron 

(MLP), Kohonen 
76.67 

Wiśniewski [13] 

38 samples for 

prolongation of 

fricatives + 30 samples 

for stop blockade + 30 

free-of-silence samples 

MFCCs HMMs 70 

Wiśniewski [14] - MFCCs HMMs Approximately 80 

Tian-Swee [15] 
15 normal speakers + 10 

artificial stuttered speech 
MFCCs HMMs 96 

Ravikumar [16] 10 speakers MFCCs Perceptron 83 

Świetlicka [17] 

8 stuttering speakers + 4 

normal speakers (yields 

59 "uent speech samples 

+ 59 non"uent speech 

samples) 

Spectral measure (FFT 512) 
Kohonen, MLP, radial 

basis function (RBF) 
88.1–94.9 

Ravikumar [18] 15 speakers MFCCs SVM 94.35 

Sin Chee [19] 10 speakers MFCCs kNN, LDA 90.91 

Sin Chee [20] 10 speakers 
Linear prediction cepstral 

coe*icients (LPCC) 
kNN, LDA 89.77 

M. Hariharan [21] 10 speakers LPC-based cepstral parameters kNN, LDA 94 and above 

Chia Ai [22] 10 speakers MFCC and LPCC coe*icients  kNN and LDA 92.55 and 94.51 
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From a literature review, it was observed that different feature extraction and classification algorithms

have been proposed. In this work, the comparison of 3 speech feature extraction methods is presented for

classifying the 2 types of speech disfluencies (repetition and prolongation), using mel frequency cepstral coef-

ficients (MFCCs) and linear predictive coding (LPC)- and perceptual linear predictive (PLP)-based methods.

In order to classify the 2 types of disfluencies, the MFCCs and the LPC- and PLP-based cepstral coefficients

are extracted to characterize the disfluent speech. Three different classifiers, the k-nearest neighbor (kNN)

classifier, linear discriminant analysis (LDA)-based classifier, and support vector machine (SVM), are employed

for the classification of the speech disfluencies. A 10-fold cross-validation is applied to assess the reliability of

the classifiers results.

The paper is organized as follows. The methodology of the system and database used in the experiment

are presented in Section 2. The acoustic feature extraction is presented in Section 3. The fundamentals of the

classification algorithms are described in Section 4. The experimental results using 3 acoustic speech features

are reported in Section 5. Finally, the conclusions and future work are given in Section 6.

2. Methodology

In this paper, the classification of speech disfluencies consists of 2 important stages, as illustrated in Figure 1:

the acoustic feature extraction and classification. MFCCs and LPC- and PLP-based cepstral coefficients are

used to characterize the disfluent speech. Three classifiers (kNN, LDA, and SVM) are employed to evaluate

the effectiveness of the acoustic features for the classification of 2 types of speech disfluencies (repetition and

prolongation). The effectiveness levels of the features are compared to each other. However, it is not easy for

us to compare our results with previous works since other researchers used different databases. In this work,

stuttered speech samples are taken from the University College London Archive of Stuttered Speech (UCLASS)

website [9]. Table 1 tabulates the summary of several research works on stuttering recognition.

Disfluent/Stuttered

Speech

Feature Extraction

(MFCCs, LPC–, and

PLP-Based Methods

Classification of

Speech Disfluencies

Figure 1. Block diagram of the feature extraction and classification phase.

2.1. Database

The database was obtained from the UCLASS archive [9]. It consists of 3 types of recordings: monologs,

readings, and conversation. There are 43 different speakers contributing 107 ‘reading’ recordings. Table 2

shows the distribution of the ‘reading’ recording database. In this work, only a subset of the available sample,

which has 39 samples of speech, is taken from the UCLASS archive [23] for analysis. It includes 2 female

speakers and 37 male speakers, whose ages range from 11 years and 2 months to 20 years and 1 month. The

samples are chosen to cover a broad range of both age and stuttering rate. Most of the ‘reading’ samples do

not have a text script, and hence only the ‘reading’ samples with text scripts are chosen for our investigation.

In this study, only 2 types of lexical disfluencies, namely prolongation and repetition, are investigated.

Both types of disfluencies can be detected easily in monosyllabic words. Thus, only the speech samples with the

content of ‘One more week to Easter’ and ‘Arthur the rat’ are selected due to the fact that 90% of its content

is monosyllable words [4,5]. Each of the 2 passages consists of more than 300 words. Through listening, the 2
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types of disfluencies are identified and segmented manually. A total of 77 speech samples of prolongation and

94 speech samples of repetition are obtained.

Table 2. Age and sex distribution of the reading recordings in the chosen subset of the UCLASS databases.

 Age range 
Sex 

Male Female 

Recording 7 years and 10 

months to 20 

years and 7 

months 

92 15 

Speaker 38 5 

3. Acoustic feature extraction

Acoustic feature extraction plays an important role in speech processing. The LPC-based cepstral parameters.

MFCCs, and PLP-based cepstral coefficients are extracted to characterize disfluent speech.
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Figure 2. Block diagram of the LPC-based cepstral parameter, MFCCs, and PLP extraction.
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Figure 2 illustrates the extraction of the LPC-based parameters (LPC, LPCC, and WLPCC), MFCCs,

and PLP from a speech signal (prolongation/repetition). This section briefly explains the background theory

of the derivation of the LPC-based cepstral parameters, MFCCs, and PLP-based cepstral features.

3.1. Speech signal preprocessing

The original sampling frequency of the speech samples is 44.1 kHz. For speech processing purposes, each of the

speech samples is down-sampled to 16 kHz. This is reasonable for the speech processing task in the present

work, because most of the salient speech features are within an 8-kHz bandwidth [24]. Before the stage feature

extraction, the speech samples are preemphasized to spectrally flatten the signal, to even the spectral energy

envelope by amplifying the importance of the high-frequency components, and for removing the DC component

in the signal. First, the disfluent speech samples are passed through a first-order preemphasis filter and its

transfer function:

H(z) = 1−ã ∗ z−1 0.9 ≤ ã ≤ 1.0, (1)

where ã is a positive parameter used to control the degree of preemphasis filtering. Normally, the ã value is

chosen at between 0.9 and 1.0. The commonly used ã value is 15/16 = 0.9375 or 0.95 [25]. In this work, the

value of ã is set as equal to 0.9375. Preemphasized disfluent speech signals are segmented into frames of N

samples with an overlap of (1/3) × N. Each frame is multiplied with a Hamming window to minimize the signal

discontinuities. The frame length is varied from 10–50 ms [21]. The acoustic features are extracted from each

frame and used for the classification.

3.2. LPC analysis

In linear predictive analysis, each sample is estimated as a linear combination of the past p samples, where p

represents the order of prediction [25]. If s(n) is the present sample, then it is estimated by the past p samples
as:

ŝ(n) =

p∑
m=1

ams(n−m). (2)

The prediction error, e(n) is the difference between the actual and the estimated sample value, defined as:

e(n) = s(n)− ŝ(n) = s(n)−
p∑

m=1

ams(n−m), (3)

where am are the linear prediction coefficients. Each of the windowed signals is autocorrelated according to the

following formula:

r(m) =
N−1−m∑

n=0

x(n)x(n+m),m = 0, 1, . . . , p, (4)

where p is the order of the LPC analysis and p is fixed as 2, 8, 10, and 14 [21,22,26]. To convert the

autocorrelation coefficients into LPC coefficients, the LPC analysis is performed and implemented using the

Durbin–Levinson recursive algorithm. The final solution for the LPC coefficients is given by Eq. 5.

aj = apj1 ≤ j ≤ p (5)
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These LPC coefficients are then converted to cepstral coefficients using the following recursive method:

cm = am +

m−1∑
k=1

(
k

m

)
ckam−k, 1 ≤ m ≤ p, (6)

cm =

m−1∑
k=1

(
k

m

)
ckam−km > p, (7)

where m is the order of the cepstral coefficients. Finally, the LPCC features are obtained. However, the low-

order cepstral coefficients are sensitive to the overall spectral slope and the high-order cepstral coefficients are

sensitive to noise and other forms of noise like variability [25]. Hence, a standard technique is to weigh the

cepstral coefficients by a tapered window so as to minimize these sensitivities. The appropriate weighing is the

band pass filter, which is given as follows:

wm =

[
1 +

p

2
sin

(
πm

p

)]
, 1 ≤ m ≤ p. (8)

The weighted cepstral coefficients are given by:

ĉm = wmcm, 1 ≤ m ≤ p. (9)

The WLPCC features are obtained from every frame of a signal using Eq. (9). In the literature, the

WLPCCs have been used as a feature extraction method in other applications [26–27]. In this study, the

LPC-based cepstral coefficients are extracted to discriminate between the 2 types of disfluencies (repetition and

prolongation). The effects of the different LPC orders and different frame lengths on the classification accuracy

are also investigated.

3.3. Mel-frequency cepstral coefficients

MFCCs have been widely used as a feature extraction method for both speech and speaker recognition systems.

In recent years, MFCCs also have been proven to be one of the successful feature extraction methods in

speech disfluency classification [12,15,16,18,19,22]. According to psychophysical studies, human perception of

the frequency contents of sound for speech signals follow a subjectively defined nonlinear scale. The frequency

scale-warping to the mel scale has led to the cepstrum domain representation. A block diagram of the MFCC

feature extraction method is illustrated in Figure 2.

In this work, the MFCCs are extracted as baseline features for comparison with the LPC-based cepstral

coefficients. The MFCCs are computed by applying the fast Fourier transform (FFT) on the windowed signal.

The spectrum of each frame is filtered by a triangular bandpass filter, and its center frequencies and bandwidth

approximately match the auditory critical band filters, known as the mel scale filter. The mel frequency scale

has a linear frequency spacing below 1 kHz and a logarithmic spacing above 1 kHz. The mapping of the linear

frequency to the mel frequency is shown in Eq. (10).

Mel(f) = 2595Log10

(
1 +

f

700

)
(10)

The logarithm is computed on the filter bank output. Finally, a discrete cosine transform is employed to generate

the cepstral coefficients. In this study, 25 MFCCs are extracted and used to represent a disfluent speech.
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3.4. Perceptual linear predictive analysis

PLP is a combination of spectral analysis and linear prediction analysis. The PLP technique uses concepts from

the psychophysics of hearing [28]. In PLP analysis, windowed speech samples are converted into the frequency

domain using Fourier transform to compute the short-term power spectrum. This spectrum is subjected to

critical band analysis, where a filterbank is designed based on the Bark scale and is preemphasized by a function

that approximates the sensitivity of human hearing at different frequencies. The output is compressed through

intensity to loudness conversion to approximate the nonlinear relationship between the intensity of a sound

and its perceived loudness. The critical band spectrum is converted into a small number of linear predictive

coefficients by applying an inverse discrete Fourier transform and finally the linear predictive parameters are

usually transformed to cepstral coefficients. The block diagram of the PLP feature extraction is presented in

Figure 2.

4. Classification

Three different classifiers, the kNN classifier, LDA-based classifier, and SVM, are employed for the classification

of the speech disfluencies. This section briefly describes the fundamentals of the kNN, LDA, and SVM classifiers.

A 10-fold cross-validation is used for testing the reliability of the classifiers’ results.

4.1. k-Nearest neighbors classifier

In pattern recognition, the kNN algorithm is a method for classifying objects based on the closest training

examples in the feature space [29,30]. An object is classified by a majority vote of its neighbors, with the object

being assigned to the class most common among its k nearest neighbors (k is a positive integer). In the kNN

algorithm, the classification of a new test feature vector is determined by the class of its kNNs. Here, the kNN

algorithm is implemented using Euclidean distance metrics to locate the nearest neighbors. The number of

neighbors (i.e. k) used to classify the new test vector is varied in the range of 1, 2, . . . , 10, and its effects on

classification performance are presented in the form of classification accuracy with standard deviation.

4.2. Linear discriminant classifier

Discriminant analysis is a statistical technique to classify objects into mutually exclusive and exhaustive groups

based on a set of measurable object’s features. Linear discriminants (LDs) [29,30] partition the feature space

into the different classes using a set of hyperplanes. The parameters of this classifier model are fitted to the

available training data using the method of maximum likelihood. This model assumes that the feature data has

a Gaussian distribution for each class. In response to the input features, the LDs provide a probability estimate

of each class. The final classification is obtained by choosing the class with the highest probability estimate.

Using this method, the processing required for training is achieved by direct calculation and is extremely fast

compared to other classifier models. The LDA-based classifier is designed with a ‘linear’ discriminant function.

4.3. Support vector machine

In this work, SVM is used as a classifier and it is a promising method for solving nonlinear classification

problems, function and density estimation, and pattern recognition tasks [7,31]. It was originally proposed to

classify samples within 2 classes. It maps the training samples of 2 classes into a higher dimensional space

through a kernel function. SVM seeks an optimal separating hyperplane in this new space to maximize its
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distance from the closest training point. While testing, a query point is categorized according to the distance

between the point and the hyperplane.

Consider a training dataset {xi, yi}Ni=1 , where xi ∈ Rn indicates the input space of the sample and with

a corresponding target output of yi ∈ R for i = 1, . . . , N . To construct a nonlinear support vector classifier,

the inner product (x, y) is replaced by a kernel function K(x, y):

f(x) = sign

[
N∑
i=1

αiyiK(x, xi) + b

]
. (11)

SVM models are built around a kernel function that transforms the input data into an n-dimensional space,

where a hyperplane can be constructed to partition the data. Three kinds of kernel functions, linear kernel,

multilayer kernel, and radial basis function (RBF) kernel, are normally used by researchers [7,31]. In this work,

the RBF kernel function is used since it gives excellent generalization and a low computational cost. In the RBF

kernel, σ2 (sig2) is the important parameter and it cause the changes in the shape flexion of the hyperplane.

K(x, xi) = exp

(
−||x− xi||2

2σ2

)
(12)

In this work, the LS-SVMLab toolbox [32] is used to perform the classification of the speech disfluencies. There

are 2 parameters that are to be chosen optimally, the regularization parameter (γ , gam), and σ2 (sig 2), which

is the squared bandwidth of the RBF kernel to obtain better accuracy. All of the feature extraction and

classifications are developed in a MATLAB environment.

5. Results and discussions

The disfluent speech signals are subjected to acoustic feature extraction using LPC- and PLP-based parame-

terization techniques and MFCCs. The number of PLP and LPC coefficients depends on the order of the LPC.

A different number of MFCCs (13, 15, 17, and 24) is used to characterize the disfluent speech. In this work, a

10-fold cross-validation scheme is used to prove the reliability of the classification results. In the 10-fold cross-

validation scheme, the proposed feature vectors are divided randomly into 10 sets and the training is repeated

10 times. Three classifiers are employed for classifying the different types of speech disfluencies. In the SVM

classifier, the suitable values of the regularization parameter (γ , gam) and σ2 (sig2) are chosen optimally as 90

and 0.9, respectively, to obtain better accuracy. In the kNN classifier, different values of ‘k’ between 1 and 10

are used. In the LDA-based classifier, a ‘linear’ discriminant function is used. The classification results of the

LPC- and PLP-based cepstral coefficients and MFCCs using the kNN, LDA, and SVM classifiers are presented

in Tables 3 and 4. The average and standard deviation of the classification accuracies of the different types of

speech disfluencies are tabulated. The standard deviation of the classification clearly reveals the consistency of

the classifier’s results. If the standard deviation is higher, the classification results are inconsistent and it also

reveals that the learning parameters of the classifiers affects the performance of the classifiers. From Table 3, it

can be observed that the PLP features give better classification accuracy compared to the LPC-based cepstral

parameters. The LPC orders are chosen (2, 8, 10, and 14) based on our previous investigation [21]. For low

orders, the LPC spectrum may pick up only the prominent resonance peak and yield poor results, which can be

observed from Table 3. On the other hand, when the LPC order is higher, it introduces several spurious peaks

in the LPC spectrum, which is also gives poor results. Hence, the proper order for the LPC should be chosen
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to obtain a better classification accuracy [21]. From Table 4, the MFCCs give more than 95% classification

accuracy with 13 MFCCs. The SVM classifier gives higher accuracy than the kNN and LDA classifiers, using

all of the feature extraction methods (MFCCs, LPC, and PLP). From the results, it is inferred that the SVM

is a more suitable and reliable classifier for the classification of speech disfluencies. Different frame lengths also

affect the classification performance. The best classification accuracies are obtained for the frame lengths of 10

ms, 20 ms, and 30 ms. The performance of the MFCCs is also similar to the performance of the WLPCC and

PLP features. The results of the current work are very promising; however, it is not easy for us to compare

our results with previous works since other researchers used different databases and their computations and

presentations of the results are not uniform. In order to prove the reliability of the classification results, a

10-fold cross-validation is performed. The results are presented by implementing 3 acoustic feature extraction

methods and 3 different classification methods using the speech samples from the UCLASS archive. The results

of the present work cannot be compared directly with previous works [16,18], since they used different databases

and they implemented their proposed algorithms under different conditions (the classification of normal and

stuttered speech). Maximum accuracies of 83% and 94.35% were reported in [16,18]. In [33], the maximum

accuracy was reported as 86.19% using 39 MFCCs. However, our proposed methods give better accuracy than

earlier works [16,18,33] in classifying 2 types of disfluencies (repetition and prolongation).

Table 4. Classification results of the MFCCs for different frame lengths.

No. of MFCCs Classifiers 10 ms 20 ms 30 ms 40 ms 50 ms

13

kNN 90.70± 1.25 92.51± 1.32 91.99± 0.83 93.51± 1.52 91.40± 1.26
LDA 91.35± 0.72 91.75± 0.58 90.70± 0.80 91.75± 0.93 88.30± 1.10
SVM 95.15± 0.68 95.73± 0.83 93.92± 0.30 94.21± 0.89 93.51± 0.70

15

kNN 88.83± 2.87 92.16± 1.75 91.35± 0.66 92.16± 1.36 91.11± 1.87
LDA 91.05± 0.55 91.35± 1.13 91.05± 0.55 91.81± 0.48 90.53± 0.54
SVM 95.50± 0.62 96.08± 0.73 95.79± 0.25 96.14± 0.49 95.67± 0.56

17

kNN 89.12± 2.62 92.05± 1.21 90.29± 0.74 92.28± 1.53 90.12± 1.88
LDA 90.47± 0.73 91.35± 0.91 90.99± 0.49 91.87± 1.12 90.82± 0.39
SVM 95.73± 0.73 96.02± 0.82 95.32± 0.78 95.73± 0.48 95.26± 0.85

24

kNN 88.36± 2.58 89.94± 1.76 90.70± 1.31 90.58± 1.77 90.35± 1.83
LDA 89.12± 1.00 89.30± 0.91 89.06± 0.68 89.59± 1.37 89.53± 0.80
SVM 95.15± 1.07 95.38± 0.64 94.39± 0.96 93.86± 0.84 94.09± 0.93

6. Conclusion

This paper presented a comparison of 3 speech feature extraction methods for the classification of 2 types

of speech disfluencies (repetition and prolongation). Three different classifiers (kNN, LDA, and SVM) were

employed. The disfluent speech samples were subjected to feature extraction using MFCCs and LPC- and PLP-

based methods. In the LPC- and PLP-based methods, the order of the LPC was varied and its effect on the

classification was also investigated. A 10-fold cross-validation was used to test the reliability of the classifier’s

results. The SVM outperformed kNN and the LDA. SVM gives the best average classification accuracy of

above 95% using the WLPCC, PLP, and MFCC features. The classification results indicate that the proposed

method could be used as a valuable tool for speech therapists in stuttering assessments. In the future, various

feature selection techniques will be used to reduce the number of features and the proposed methods will also

be implemented to classify other types of disfluency. Different classification algorithms will also be investigated

to improve the classification results of speech disfluencies.
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