Dispersion of the second harmonic generation from $CdGa_2X_4$ (X = S, Se) defect chalcopyrite: DFT calculations

Abstract

All electron full potential linear augmented plane wave method was used for calculating the nonlinear optical susceptibilities of CdGa₂X₄ (X = S, Se) within the framework of density functional theory. The exchange correlation potential was solved by recently developed modified Becke and Johnson (mBJ) approximation. The crystal structure of CdGa₂S₄ and CdGa₂Se₄ reveals a large uniaxial dielectric anisotropy ensuing the birefringence of –0.036 and –0.066 which make it suitable for second harmonic generation. The second order susceptibility $|\chi^{(2)}_{ijk}(\omega)|_{\text{[Xijk(2)(\omega)]}} = \text{and microscopic first hyperpolarizability } \beta_{ijk} \ (\omega \) \text{ were calculated. The calculated } |\chi^{(2)}_{123}(\omega)|_{\text{[X123(2)(\omega)]}} = \text{and } |\chi^{(2)}_{312}(\omega)|_{\text{[X312(2)(\omega)]}} = \text{static values for the dominant components found to be 18.36 pm/V and 22.23 pm/V for CdGa₂S₄ and CdGa₂Se₄. Both values shifted to be 60.12 pm/V and 108.86 pm/V at <math>\lambda$ = 1064 nm. The calculated values of $\beta_{123}(\omega)$ is 6.47 × 10⁻³⁰ esu at static limit and 12.42 × 10⁻³⁰ esu at λ = 1064 nm for CdGa₂Se₄. The evaluation of second order susceptibilities and first hyperpolarizabilties suggest that CdGa₂X₄ possess huge second harmonic generation.

Keywords; Defect chalcopyrites, Birefringence, Nonlinear optical susceptibilities