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We study a fuzzy fractional differential equation (FFDE) and present its solution using Zadeh’s extension principle. The proposed
study extends the case of fuzzy differential equations of integer order. We also propose a numerical method to approximate the
solution of FFDEs. To solve nonlinear problems, the proposed numerical method is then incorporated into an unconstrained
optimisation technique. Several numerical examples are provided.

1. Introduction

Fractional calculus is an important branch in mathematical
analysis. It is a generalisation of ordinary calculus that
allows noninteger order. At the beginning, it was slowly
established. However, after Leibniz and Newton invented
differential calculus, it has been a subject of interest among
mathematicians, physicists, and engineers. Consequently, the
theory of fractional calculus has been extensively developed
and influenced in many areas of discipline. The fractional
integral and fractional derivative of Riemann-Liouville, for
example, have been applied to solve many mathematical
problems [1–6]. One of the particular interests is the case of
solving fractional differential equations [7–9]. The fractional
derivative of Riemann-Liouville, however, has a common
characteristic. It requires a quantity of fractional derivative
of unknown solution at initial point. In practice, we do not
clearly know what the meaning of the fractional derivative at
that point is. In other words, the required quantity cannot be
measured and perhaps may not be available [10, 11].

The well-known and popularly used method in solving
fractional differential equations is the Caputo fractional
derivative. It allows to specify a quantity of integer order
derivatives at the initial point.This quantity typically is avail-
able and can be measured. It is therefore not surprising that

there is a vast literature dealing with fractional differential
equations involving the Caputo fractional derivative [12–16].
The theory and application of fractional differential equations
under both types of fractional derivatives have been discussed
bymany authors [11, 17–25]. Some potential applications have
been studied in [26–28].

In the context of mathematical modelling, developing
an accurate fractional differential equation is not a simple
task. It requires an understanding of real physical phenomena
involved. The real physical phenomena, however, are always
pervaded with uncertainty. This is obvious when dealing
with “living” materials such as soil, water, and microbial
populations [29]. When a real physical phenomenon is
modelled by a fractional differential equation, namely,

𝐷
𝛽
𝑎𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) , 0 < 𝛽 ≤ 1, 𝑡 > 𝑎,

𝑥 (𝑡0) = 𝑥0,

(1)

we cannot usually be sure that the model is perfect. For
example, the initial value in (1) may not be known precisely.
It may take any value in the form of “less than 𝑥0,” “about
𝑥0,” or “more than 𝑥0.” Classical mathematics, however, fail
to cope with this situation. Therefore, it is necessary to have
other theories in order to handle this issue. Various theories
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exist for describing this situation and the most popular one is
the fuzzy set theory [30].

In order to obtain amore realisticmodel than (1), Agarwal
et al. [31] have taken an initiative to introduce the concept
of solution for fuzzy fractional differential equations. This
contribution has motivated several authors to establish some
results on the existence and uniqueness of solution (see [32]).
In [33], the authors derived the explicit solution of fuzzy
fractional differential equations using the Riemann-Liouville
H-derivative. Recently, Salahshour et al. [34] applied fuzzy
Laplace transforms [35] to solve fuzzy fractional differential
equations. Basically, the proposed ideas are a generalisation
of the theory and solution of fuzzy differential equations [36–
41]. However, the authors considered fuzzy fractional differ-
ential equations under the Riemann-Liouville H-derivative.
Again, it requires a quantity of fractional H-derivative of
an unknown solution at the fuzzy initial point. In this
paper, we propose a new interpretation of fuzzy fractional
differential equations and present their solutions analytically
and numerically. The proposed idea is a generalisation of
the interpretation given in [42–49], where the authors used
Zadeh’s extension principle to interpret fuzzy differential
equations. According to Mizukoshi et al. [43], this interpre-
tation requires neither the concept of derivatives of a fuzzy
function nor the use of selection theory to obtain a solution
to the fuzzy differential equation.

This paper is organised in the following sequence. In
Section 2, we recall some basic definitions and theoretical
backgrounds needed in this paper. In Section 3, we present
the solution of fuzzy fractional differential equations analyti-
cally and numerically. In Section 4, some numerical examples
are given. Finally in Section 5, we give conclusions.

2. Basic Concepts

In this section, we briefly elaborate some definitions and
important concepts of fractional calculus and fuzzy set.

2.1. The Fractional Integral and Fractional Derivative. The
following definitions of fractional integral and fractional
derivative are adopted from [11].

Definition 1. A real function 𝑥(𝑡), 𝑡 > 0, is said to be in the
space 𝐶𝜇, 𝜇 ∈ R, if there exists a real number 𝑝 > 𝜇, such
that 𝑥(𝑡) = 𝑡𝑝𝑥1(𝑡), where 𝑥1(𝑡) ∈ 𝐶(0,∞) and it is said to be
in the space 𝐶𝑛𝜇 if and only if 𝑥𝑛 ∈ 𝐶𝜇, 𝑛 ∈ N.

Definition 2. The Riemann-Liouville fractional integral of 𝑥
of order 𝛽 > 0 with 𝑎 ≥ 0 is defined as

𝐼
𝛽
𝑎𝑥 (𝑡) =

1

Γ (𝛽)
∫

𝑡

𝑎
(𝑡 − 𝑠)

𝛽−1
𝑥 (𝑠) 𝑑𝑠, 𝑡 > 𝑎, (2)

and for 𝛽 = 0, the Riemann-Liouville fractional integral of 𝑥
is defined as

𝐼
0
𝑎𝑥 (𝑡) = 𝑥 (𝑡) . (3)

Here, Γ(𝛽) is the well-known gamma function defined as

Γ (𝛽) = ∫

∞

0
𝑡
𝛽−1
𝑒
−𝑡
𝑑𝑡. (4)

Definition 3. The Caputo fractional derivative of 𝑥 of order
𝛽 > 0 with 𝑎 ≥ 0 is defined as

𝑐
𝐷
𝛽
𝑎𝑥 (𝑡) =

1

Γ (𝑛 − 𝛽)
∫

𝑡

𝑎
(𝑡 − 𝑠)

𝑛−𝛽−1
𝑥
(𝑛)
(𝑠) 𝑑𝑠 (5)

for 𝑛 − 1 < 𝛽 ≤ 𝑛, 𝑛 ∈ N, 𝑡 ≥ 𝑎, 𝑥 ∈ 𝐶𝑛−1.

The following are two basic properties of the Caputo
fractional derivative [50].

(1) Let 𝑥 ∈ 𝐶𝑛−1, 𝑛 ∈ N. Then 𝑐𝐷𝛽𝑎𝑥, 0 ≤ 𝛽 ≤ 𝑛, is well
defined and 𝑐𝐷𝛽𝑎𝑥 ∈ 𝐶−1.

(2) Let 𝑛 − 1 < 𝛽 ≤ 𝑛, 𝑛 ∈ N, and 𝑥 ∈ 𝐶𝑛𝜇, 𝜇 ≥ −1. Then

𝐼
𝛽
𝑎 (
𝑐
𝐷
𝛽
𝑎) 𝑥 (𝑡) = 𝑥 (𝑡) −

𝑛−1

∑

𝑘=0

𝑥
(𝑘)
(𝑎)

(𝑡 − 𝑎)
𝑘

𝑘!
. (6)

The Laplace transform of the Caputo fractional derivative
is given by [51]

L {
𝑐
𝐷
𝛽
𝑥 (𝑡)}

= 𝑠
𝛽
𝑋 (𝑠) −

𝑛−1

∑

𝑘=0

𝑠
𝛽−𝑘−1

𝑥
(𝑘)
(0) ; 𝑛 − 1 < 𝛽 ≤ 𝑛.

(7)

2.2. Fuzzy Set Theory. According to Zadeh [30], a fuzzy set
is a generalisation of a classical set that allows a membership
function to take any value in the unit interval [0, 1].

Definition 4 (see [30]). Let 𝑈 be a universal set. A fuzzy set
𝐴 in 𝑈 is defined by a membership function 𝐴(𝑥) that maps
every element in 𝑈 to the unit interval [0, 1].

Definition 5 (see [38]). Let 𝐴 be a fuzzy set defined inR.𝐴 is
called a fuzzy number if

(i) 𝐴 is normal: there exists 𝑥0 ∈ R such that 𝐴(𝑥0) = 1;
(ii) 𝐴 is convex: for all 𝑥, 𝑦 ∈ R and 0 ≤ 𝜆 ≤ 1, it holds

that

𝐴 (𝜆𝑥 + (1 − 𝜆) 𝑦) ≥ min (𝐴 (𝑥) , 𝐴 (𝑦)) ; (8)

(iii) 𝐴 is upper semicontinuous: for any 𝑥0 ∈ R, it holds
that

𝐴 (𝑥0) ≥ lim
𝑥→𝑥±

0

𝐴 (𝑥) ; (9)

(iv) [𝐴]0 = {𝑥 ∈ R | 𝐴(𝑥) > 0} is a compact subset of R.

Definition 6 (see [38]). Let𝐴 be a fuzzy number defined inR.
The 𝛼-cut of 𝐴 is the crisp set [𝐴]𝛼 that contains all elements
in R such that the membership value of 𝐴 is greater than or
equal to 𝛼; that is,

[𝐴]
𝛼
= {𝑥 ∈ 𝑈 | 𝐴 (𝑥) ≥ 𝛼} , 𝛼 ∈ (0, 1] . (10)
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For a fuzzy number 𝐴, its 𝛼-cuts are closed intervals inR

and we denote them by

[𝐴]
𝛼
= [𝑎
𝛼
1 , 𝑎
𝛼
2 ] . (11)

Definition 7 (see [52]). A fuzzy number𝐴 is called a triangu-
lar fuzzy number if itsmembership function has the following
form:

𝐴 (𝑥) =

{{{{{{{

{{{{{{{

{

0, if 𝑥 < 𝑎,
𝑥 − 𝑎

𝑏 − 𝑎
, if 𝑎 ≤ 𝑥 < 𝑏,

𝑐 − 𝑥

𝑐 − 𝑏
, if 𝑏 ≤ 𝑥 ≤ 𝑐,

0, if 𝑥 > 𝑐,

(12)

and its 𝛼-cuts are simply [𝐴]𝛼 = [𝑎 + 𝛼(𝑏 − 𝑎), 𝑐 − 𝛼(𝑐 − 𝑏)],
𝛼 ∈ (0, 1].

In this paper, we denote 𝐴 = (𝑎, 𝑏, 𝑐) as the triangular
fuzzy number and F(R) as the set of all triangular fuzzy
numbers.

Any crisp function can be extended to take fuzzy set as
arguments by applying Zadeh’s extension principle [30]. Let
𝑓 be a function from 𝑋 to 𝑌. Given a fuzzy set 𝐴 in 𝑋, we
want to find a fuzzy set 𝐵 = 𝑓(𝐴) in 𝑌 that is induced by 𝑓. If
𝑓 is a strictly monotone, then we can extend 𝑓 to fuzzy set as
follows:

𝑓 (𝐴) (𝑦) = {
𝐴 (𝑓
−1
(𝑦)) , if 𝑦 ∈ range (𝑓) ,

0, if 𝑦 ∉ range (𝑓) .
(13)

It is clear that (13) can be easily calculated by determining
themembership at the endpoints of the 𝛼-cuts of𝐴. However,
in general, the process of finding the fuzzy set 𝐵 = 𝑓(𝐴)

is more complicated and cannot be gathered easily. For
example, if 𝑓 is nonmonotone, then the problem can arise
when two or more distinct points in 𝑋 are mapped to the
same point in 𝑌. If this is the case, then the above equation
may take two or more different values. This requires a new
extension of (13) as shown below:

𝑓 (𝐴) (𝑦) =

{

{

{

sup
𝑥∈𝑓−1(𝑦)

𝐴 (𝑥) , if 𝑦 ∈ range (𝑓) ,

0, if 𝑦 ∉ range (𝑓) ,
(14)

where

𝑓
−1
(𝑦) = {𝑥 ∈ 𝑋 | 𝑓 (𝑥) = 𝑦} . (15)

Some computational methods to compute (14) can be
found in [53, 54].

Theorem 8 (see [55]). If 𝑓 : R → R is continuous, then 𝑓 :
F(R) → F(R) is well defined and

[𝑓(𝐴)]
𝛼
= 𝑓 ([𝐴]

𝛼
) , ∀𝛼 ∈ [0, 1] , ∀𝐴 ∈ F (R) , (16)

where 𝑓(𝐴) = {𝑓(𝑢) | 𝑢 ∈ [𝐴]𝛼}.

For 𝐴, 𝐵 ∈ F(R) and 𝜆 ∈ R, the sum 𝐴 + 𝐵 and the
product 𝜆𝐴 are defined as follows, respectively:

[𝐴 + 𝐵]
𝛼
= [𝐴]

𝛼
+ [𝐵]
𝛼
,

[𝜆𝐵]
𝛼
= 𝜆[𝐴]

𝛼
(17)

for each 𝛼 ∈ [0, 1].

Definition 9 (see [56]). If 𝐴 and 𝐵 are two fuzzy numbers,
then the distance𝐷 between 𝐴 and 𝐵 is defined as

𝐷 (𝐴, 𝐵) = sup
𝛼∈[0,1]

max {𝑎
𝛼
1 − 𝑏
𝛼
1
 ,
𝑎
𝛼
2 − 𝑏
𝛼
2
} . (18)

In [57], the authors have shown that (F(R), 𝐷) is a
complete metric space and the following properties are well
known:

(i) 𝐷(𝐴 + 𝐶, 𝐵 + 𝐶) = 𝐷(𝐴, 𝐵), ∀𝐴, 𝐵, 𝐶 ∈ F(R),
(ii) 𝐷(𝜆𝐴, 𝜆𝐵) = |𝜆|𝐷(𝐴, 𝐵), ∀𝐴, 𝐵 ∈ F(R) and 𝜆 ∈ R,
(iii) 𝐷(𝐴 + 𝐵, 𝐶 + 𝐷) ≤ 𝐷(𝐴, 𝐶) + 𝐷(𝐵,𝐷), ∀𝐴, 𝐵, 𝐶,𝐷 ∈

F(R).

3. Fuzzy Fractional Differential Equations

In this section, we present analytical and numerical solutions
of fuzzy fractional differential equations.

3.1. Analytical Solution of Fuzzy Fractional Differential Equa-
tions. First, let us consider the following fractional differen-
tial equation:

𝑐
𝐷
𝛽
𝑎𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) ,

𝑥 (𝑡0) = 𝑥0,

(19)

where 𝑓 : [𝑡0, 𝑇] × R → R is a real-valued function, 𝑥0 ∈
R, and 𝛽 ∈ (0, 1]. If 𝛽 = 1, then (19) becomes an ordinary
differential equation.

Assume that the initial value is replaced by a fuzzy num-
ber; then we have the following fuzzy fractional differential
equation:

𝑐
𝐷
𝛽
𝑎𝑋(𝑡) = 𝑓 (𝑡, 𝑋 (𝑡)) ,

𝑋 (𝑡0) = 𝑋0,

(20)

where𝑋0 ∈ F(R) and 𝛽 ∈ (0, 1]. If 𝛽 = 1, then (20) becomes
a fuzzy differential equation.

In order to find the solution of (20), we first find the
solution of (19). By taking the Laplace transform on both
sides of (19), we get

L [
𝑐
𝐷
𝛽
𝑎𝑥 (𝑡)] =L [𝑓 (𝑡, 𝑥 (𝑡))] . (21)

It follows that

𝑠
𝛽
L {𝑥 (𝑡)} − 𝑥 (𝑡0) 𝑠

𝛽−1
=L [𝑓 (𝑡, 𝑥 (𝑡))] . (22)
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Assume that after simplifying (22), we get

L [𝑥 (𝑡)] = 𝑚 (𝑠) . (23)

Then by taking the inverse Laplace transform to (23), we have

𝑥 (𝑡) =L
−1
[𝑚 (𝑠)] = 𝑔 (𝑡, 𝛽, 𝑥0) , (24)

for 𝑡 ∈ [𝑡0, 𝑇] and𝑥0 ∈ R. In order to find the solution of (20),
we fuzzify (24) using Zadeh’s extension principle. Hence, we
have

𝑋 (𝑡) = 𝑔 (𝑡, 𝛽, 𝑋0) , (25)

which is the solution of (20).
This procedure can be shown precisely in the following

theorem.

Theorem 10. Let 𝐺 be an open set in R and [𝑋0]
𝛼
∈ F(R) ⊂

𝐺. Suppose that 𝑓 is continuous and that for each 𝛽 ∈ (0, 1]
and each 𝑥0 ∈ 𝐺 there exists a unique solution 𝑔(⋅, 𝛽, 𝑥0) of the
problem (19) and that 𝑔(𝑡, 𝛽, ⋅) is continuous in 𝐺 for each 𝑡 ∈
[𝑡0, 𝑇] fixed. Then, there exists a unique fuzzy solution 𝑋(𝑡) =
𝑔(𝑡, 𝛽, 𝑋0) of the problem (20).

Proof. The proof of this theorem uses the basic idea found
in [46]. Since 𝑓 is continuous, there exists a unique solution
𝑔(𝑡, 𝛽, 𝑥0). This solution is well defined and continuous in 𝐺,
for each 𝑡 ∈ [𝑡0, 𝑇] fixed. Then, from Theorem 8, we have
𝑔(𝑡, 𝛽, ⋅) : F(𝐺) → F(R), which is continuous and well
defined.Therefore, there exists a unique fuzzy solution of the
form𝑋(𝑡) = 𝑔(𝑡, 𝛽, 𝑋0) for the problem (20).

Remark 11. The existence of𝑋(𝑡) is guaranteed byTheorem 8
since 𝑥(𝑡) is continuous.

Moreover, in order to have valid level sets, 𝑋(𝑡) should
satisfy the following StakingTheorem [58].

Theorem 12. If 𝑋 : [𝑡0, 𝑇] → F(R) is a fuzzy solution of
(20) and denoting [𝑋(𝑡)]𝛼 = [𝑥𝛼1 (𝑡), 𝑥

𝛼
2 (𝑡)] for 𝛼 ∈ [0, 1], then

(i) [𝑋(𝑡)]𝛼 is nonempty compact subset of R;
(ii) [𝑋(𝑡)]𝛼2 ⊆ [𝑋(𝑡)]𝛼1 for 0 ≤ 𝛼1 ≤ 𝛼2 ≤ 1;
(iii) [𝑋(𝑡)]𝛼 = ⋂

∞
𝑛=1[𝑋(𝑡)]

𝛼
𝑛 for any nondecreasing

sequence 𝛼𝑛 → 𝛼 in [0, 1].

In the following result, we will show that 𝑥𝛼1 (𝑡) and 𝑥
𝛼
2 (𝑡)

do not interchange at all 𝑡 ∈ [𝑡0,∞).

Theorem 13. If 𝑋(𝑡) = 𝑔(𝑡, 𝛽, 𝑋0) is obtained by using
Theorem 10 and [𝑋(𝑡)]𝛼 = [𝑥𝛼1 (𝑡), 𝑥

𝛼
2 (𝑡)] for 𝛼 ∈ [0, 1], then

𝑥
𝛼
1 (𝑡) and 𝑥

𝛼
2 (𝑡) do not interchange at all 𝑡 ∈ [𝑡0,∞).

Proof. We know that 𝑋(𝑡) is obtained by Zadeh’s extension
principle throughTheorem 10; then its membership function
has the following form:

𝑋 (𝑡) (𝑦) =

{

{

{

sup
𝑥∈𝑔−1(𝑡,𝛽,𝑦)

𝑋0 (𝑥) , if 𝑦 ∈ range (𝑔) ,

0, if 𝑦 ∉ range (𝑔) .
(26)

It follows that

𝑥
𝛼
1 (𝑡) = min {𝑔 (𝑡, 𝛽, 𝑢) | 𝑢 ∈ [𝑥𝛼0,1, 𝑥

𝛼
0,2]} ,

𝑥
𝛼
2 (𝑡) = max {𝑔 (𝑡, 𝛽, 𝑢) | 𝑢 ∈ [𝑥𝛼0,1, 𝑥

𝛼
0,2]}

(27)

for 𝛼 ∈ [0, 1]. It is obvious that

𝑥
𝛼
1 (𝑡) ≤ 𝑥

𝛼
2 (𝑡) . (28)

This holds for all 𝑡 ∈ [𝑡0,∞). This completes the proof.

In general, the solution of (20) may not be found analyt-
ically. Therefore, a numerical method must be proposed.

3.2. Numerical Solution of Fuzzy Fractional Differential Equa-
tions. Fractional Euler method under the Caputo fractional
derivative has been proposed in [59]. However, in order
to approximate the solution of fuzzy fractional differential
equations, the fractional Euler method has to be extended
in the fuzzy setting. In this case, Zadeh’s extension principle
plays an important role.

Let 𝑥(𝑡) be the solution of (19). The first two terms of
fractional Taylor series for 𝑥(𝑡) at 𝑡𝑖 can be written as [59]

𝑥 (𝑡𝑖+1) ≈ 𝑥 (𝑡𝑖) +
𝑐
𝐷
𝛽
𝑥 (𝑡𝑖)

ℎ
𝛽

Γ (𝛽 + 1)
. (29)

From (19), we have

𝑥 (𝑡𝑖+1) ≈ 𝑥 (𝑡𝑖) +
ℎ
𝛽

Γ (𝛽 + 1)
𝑓 (𝑡𝑖, 𝑥 (𝑡𝑖)) . (30)

Let𝑤𝑖+1 ≈ 𝑥(𝑡𝑖+1); thenwe have the following fractional Euler
method [59]:

𝑤𝑖+1 = 𝑤𝑖 +
ℎ
𝛽

Γ (𝛽 + 1)
𝑓 (𝑡𝑖, 𝑤𝑖) , (31)

for 𝑖 = 0, 1, 2, . . . , 𝑁. Let 𝑔(𝛽, ℎ, 𝑡𝑖, 𝑤𝑖) = 𝑤𝑖 + (ℎ
𝛽
/Γ(𝛽 +

1))𝑓(𝑡𝑖, 𝑤𝑖); then (31) becomes

𝑤𝑖+1 = 𝑔 (𝛽, ℎ, 𝑡𝑖, 𝑤𝑖) . (32)

To approximate the solution of (20), (32) will be fuzzified
using Zadeh’s extension principle. We then obtain the follow-
ing fuzzy fractional Euler method:

𝑊𝑖+1 = 𝑔 (𝛽, ℎ, 𝑡𝑖,𝑊𝑖) (33)

for 𝑖 = 0, 1, . . . , 𝑁, and𝑊𝑖 ∈ F(R). Please note that if 𝛽 = 1,
then this fuzzy fractional Euler method becomes fuzzy Euler
method as proposed in [47]. The membership function of 𝑔
in (33) can be defined as

𝑔 (𝛽, ℎ, 𝑡𝑖,𝑊𝑖) (𝑦)

=

{

{

{

sup
𝑥∈𝑔−1(𝛽,ℎ,𝑡𝑖 ,𝑦)

𝑊𝑖 (𝑥) , if 𝑦 ∈ range (𝑔) ,

0, if 𝑦 ∉ range (𝑔) .

(34)
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Input: Fractional Euler Equation, Fuzzy Initial Value, 𝛽, 𝑡0, 𝑡𝑁 and𝑁
Descritise 𝛼 ← {𝛼0, 𝛼1, . . . , 𝛼𝑛};
ℎ ←

𝑡𝑁 − 𝑡0

𝑁
;

for 𝑗 = #(𝛼) do
𝑤1(1, 𝑗) ← 𝑎 + 𝛼(𝑗) ∗ (𝑏 − 𝑎);
𝑤2(1, 𝑗) ← 𝑐 − 𝛼(𝑗) ∗ (𝑐 − 𝑏);

end
for 𝑖 = 1 :𝑁 do

for 𝑗 = 1 : #(𝛼) do
𝑤1(𝑖 + 1, 𝑗) ← min(𝑔(𝛽, ℎ, 𝑡𝑖, 𝑤1(𝑖, 𝑗)), 𝑔(𝛽, ℎ, 𝑡𝑖, 𝑤2(𝑖, 𝑗)));
𝑤2(𝑖 + 1, 𝑗) ← max(𝑔(𝛽, ℎ, 𝑡𝑖, 𝑤1(𝑖, 𝑗)), 𝑔(𝛽, ℎ, 𝑡𝑖, 𝑤2(𝑖, 𝑗)));

end
end
Output: 𝑤1 and 𝑤2

Algorithm 1: Fuzzy fractional Euler method for a linear problem.

In general, the computation of (34) is not an easy task. By
using the concept of 𝛼-cuts, (34) can be calculated as follows:

𝑤
𝛼
𝑖+1,1 = min{(𝑢 + ℎ

𝛽

Γ (𝛽 + 1)
𝑓 (𝑡𝑖, 𝑢)) | 𝑢 ∈ [𝑤

𝛼
𝑖,1, 𝑤
𝛼
𝑖,2]} ,

𝑤
𝛼
𝑖+1,2 = max{(𝑢 + ℎ

𝛽

Γ (𝛽 + 1)
𝑓 (𝑡𝑖, 𝑢)) | 𝑢 ∈ [𝑤

𝛼
𝑖,1, 𝑤
𝛼
𝑖,2]} .

(35)

The optimisation problems in (35) are performed as
follows.

(a) If 𝑔(𝛽, ℎ, 𝑡𝑖, 𝑢) is increasing or decreasing on the inter-
val [𝑤𝛼𝑖,1, 𝑤

𝛼
𝑖,2], then the optimal solutions are obtained

at the endpoints of that interval (see Algorithm 1).

(b) If 𝑔(𝛽, ℎ, 𝑡𝑖, 𝑢) is nonmonotone, we first split the
interval [𝑤𝛼𝑖,1, 𝑤

𝛼
𝑖,2] into several subintervals and then

solve the optimisation problems on the subinter-
vals. By taking the minimum and maximum of all
the results, we obtain the optimal solutions on the
interval [𝑤𝛼𝑖,1, 𝑤

𝛼
𝑖,2]. These procedures are given in

Algorithm 2.

4. Numerical Examples

In this section, we present three examples for solving fuzzy
fractional differential equations.

Example 1. Consider the following linear fuzzy fractional
differential equation:

𝑐
𝐷
𝛽
0𝑋 (𝑡) = 𝑋 (𝑡) ,

𝑋 (0) = 𝑋0,

(36)

where𝛽 ∈ (0, 1], 𝑡 > 0, and𝑋0 is any triangular fuzzy number.

This problem is a generalisation of the following frac-
tional differential equation:

𝑐
𝐷
𝛽
0𝑥 (𝑡) = 𝑥 (𝑡) ,

𝑥 (𝑡) = 𝑥0,

(37)

where 𝛽 ∈ (0, 1], 𝑡 > 0, and 𝑥0 is a real number.
In order to find the solution of (36), we first find the

solution of (37). By taking the Laplace transform on both
sides of (37), we have

L [
𝑐
𝐷
𝛽
0𝑥 (𝑡)] =L [𝑥 (𝑡)] . (38)

We then obtain

𝑠
𝛽
L {𝑥 (𝑡)} − 𝑥 (𝑡0) 𝑠

𝛽−1
=L {𝑥 (𝑡)} . (39)

Simplifying (39), we get

L {𝑥 (𝑡)} =
𝑥0𝑠
𝛽−1

𝑠𝛽 − 1
. (40)

By taking the inverse Laplace transform to (40), we obtain

𝑥 (𝑡) = 𝑥0L
−1
{
𝑠
𝛽−1

𝑠𝛽 − 1
} , (41)

which finally has the following solution:

𝑥 (𝑡) = 𝑥0𝐸𝛽 (𝑡
𝛽
) , (42)

where 𝐸𝛽(∗) is the Mittag-Leffler function defined as

𝐸𝛽 (𝑧) =

∞

∑

𝑘=0

𝑧
𝑘

Γ (𝛽𝑘 + 1)
, 𝛽 > 0. (43)

By using Zadeh’s extension principle to (42) in relation to 𝑥0,
we obtain

𝑋 (𝑡) = 𝑋0𝐸𝛽 (𝑡
𝛽
) , (44)

which is the solution of (36).
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Input: Fractional Euler Equation, Fuzzy Initial Value, 𝛽, 𝑡0, 𝑡𝑁 and𝑁
Descritise 𝛼 ← {𝛼𝑛, 𝛼𝑛−1, . . . , 𝛼0};
ℎ ←

𝑡𝑁 − 𝑡0

𝑁
;

for 𝑗 = #(𝛼) do
𝑥01(1, 𝑗) ← 𝑎 + 𝛼(𝑗) ∗ (𝑏 − 𝑎);
𝑥02(1, 𝑗) ← 𝑐 − 𝛼(𝑗) ∗ (𝑐 − 𝑏);

end
𝑤1(1, :) ← fliplr(𝑥01(1, :));
𝑤2(1, :) ← fliplr(𝑥02(1, :));
for 𝑖 = 1 : 𝑁 do

for 𝑗 = 1 : #(𝛼) do
𝑤1(𝑖 + 1, 𝑗) ← min {𝑔(𝛽, ℎ, 𝑡𝑖, 𝑢)|𝑢 ∈ [𝑤1(𝑖, 1), 𝑤2(𝑖, 1)]};
𝑤2(𝑖 + 1, 𝑗) ← max {𝑔(𝛽, ℎ, 𝑡𝑖, 𝑢)|𝑢 ∈ [𝑤1(𝑖, 1), 𝑤2(𝑖, 1)]};

end
for 𝑖 = 1 : 𝑁 do

for 𝑗 = 2 : #(𝛼) do
𝑝1(𝑖, 𝑗) ← min {𝑔(𝛽, ℎ, 𝑡𝑖, 𝑢)|𝑢 ∈ [𝑤1(𝑖, 𝑗), 𝑤2(𝑖, 𝑗 − 1)]};
𝑞1(𝑖, 𝑗) ← 𝑤1(𝑖, 𝑗 − 1);
𝑟1(𝑖, 𝑗) ← min {𝑔(𝛽, ℎ, 𝑡𝑖, 𝑢)|𝑢 ∈ [𝑤2(𝑖, 𝑗 − 1), 𝑤2(𝑖, 𝑗)]};
𝑤1(𝑖 + 1, 𝑗) ← min([𝑝1(𝑖, 𝑗), 𝑞1(𝑖, 𝑗), 𝑟1(𝑖, 𝑗)]);
𝑝2(𝑖, 𝑗) ← max {𝑔(𝛽, ℎ, 𝑡𝑖, 𝑢)|𝑢 ∈ [𝑤1(𝑖, 𝑗), 𝑤1(𝑖, 𝑗 − 1)]};
𝑞2(𝑖, 𝑗) ← 𝑤2(𝑖, 𝑗 − 1);
𝑟2(𝑖, 𝑗) ← max {𝑔(𝛽, ℎ, 𝑡𝑖, 𝑢)|𝑢 ∈ [𝑤2(𝑖, 𝑗 − 1), 𝑤2(𝑖, 𝑗)]};
𝑤2(𝑖 + 1, 𝑗) ← max([𝑝2(𝑖, 𝑗), 𝑞2(𝑖, 𝑗), 𝑟2(𝑖, 𝑗)]);

end
end

end
Output: 𝑤1 and 𝑤2

Algorithm 2: Fuzzy fractional Euler method for a nonlinear problem.

Let [𝑋(𝑡)]𝛼 = [𝑥
𝛼
1 (𝑡), 𝑥

𝛼
2 (𝑡)] and 𝑋0 = (1, 2, 3), where

[𝑋0]
𝛼
= [1 + 𝛼, 3 − 𝛼] for 𝛼 ∈ [0, 1]; then the first ten terms

of (44) can be expressed as follows:

𝑥
𝛼
1 (𝑡) = (1 + 𝛼)(1 +

𝑡
𝛽

Γ (𝛽 + 1)
+

𝑡
2𝛽

Γ (2𝛽 + 1)

+
𝑡
3𝛽

Γ (3𝛽 + 1)
+

𝑡
4𝛽

Γ (4𝛽 + 1)

+
𝑡
5𝛽

Γ (5𝛽 + 1)
+

𝑡
6𝛽

Γ (6𝛽 + 1)

+
𝑡
7𝛽

Γ (7𝛽 + 1)
+

𝑡
8𝛽

Γ (8𝛽 + 1)

+
𝑡
9𝛽

Γ (9𝛽 + 1)
) ,

𝑥
𝛼
2 (𝑡) = (3 − 𝛼)(1 +

𝑡
𝛽

Γ (𝛽 + 1)
+

𝑡
2𝛽

Γ (2𝛽 + 1)

+
𝑡
3𝛽

Γ (3𝛽 + 1)
+

𝑡
4𝛽

Γ (4𝛽 + 1)

+
𝑡
5𝛽

Γ (5𝛽 + 1)

𝑡
6𝛽

Γ (6𝛽 + 1)
+

𝑡
7𝛽

Γ (7𝛽 + 1)

+
𝑡
8𝛽

Γ (8𝛽 + 1)
+

𝑡
9𝛽

Γ (9𝛽 + 1)
) .

(45)
Clearly, (45) are the valid 𝛼-cuts of the solution of

(36). For numerical approximation, we set 𝑡 ∈ [0, 2] and
𝑁 = 100. By using Algorithm 1, the results for different
values of 𝛽 are plotted in Figure 1. From the graphs, we
can see that if 𝛽 approaches 1, the approximate solutions
will approach the approximate solution of fuzzy differential
equation. Numerical values at 𝑡 = 2 for different values of 𝛽
are listed in Table 1.

Example 2. Consider the following linear fuzzy fractional
differential equation:

𝑐
𝐷
𝛽
0𝑋(𝑡) = −𝑋 (𝑡) ,

𝑋 (0) = 𝑋0.

(46)

The nonfuzzy problem associated with (46) is
𝑐
𝐷
𝛽
0𝑥 (𝑡) = −𝑥 (𝑡) ,

𝑥 (0) = 𝑥0.

(47)
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Table 1: Numerical solutions of Example 1 with different values of 𝛽.

𝛼
𝛽 = 0.6 𝛽 = 0.8 𝛽 = 1

𝑥
𝛽
1 (𝑡) 𝑥

𝛽
2 (𝑡) 𝑥

𝛽
1 (𝑡) 𝑥

𝛽
2 (𝑡) 𝑥

𝛽
1 (𝑡) 𝑥

𝛽
2 (𝑡)

0.0 26063.941926 78191.825779 98.369851 295.109553 7.244646 21.733938
0.1 28670.336119 75585.431586 108.206836 285.272568 7.969110 21.009473
0.2 31276.730311 72979.037394 118.043821 275.435583 8.693575 20.285009
0.3 33883.124504 70372.643201 127.880806 265.598598 9.418039 19.560544
0.4 36489.518697 67766.249008 137.717791 255.761613 10.142504 18.836079
0.5 39095.912889 65159.854816 147.554776 245.924627 10.866969 18.111615
0.6 41702.307082 62553.460623 157.391761 236.087642 11.591433 17.387150
0.7 44308.701274 59947.066430 167.228746 226.250657 12.315898 16.662686
0.8 46915.095467 57340.672238 177.065732 216.413672 13.040363 15.938221
0.9 49521.489660 54734.278045 186.902717 206.576687 13.764827 15.213756
1.0 52127.883852 52127.883852 196.739702 196.739702 14.489292 14.489292
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02468
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Figure 1:The numerical solution of (36) for (a) 𝛽 = 0.6, (b) 𝛽 = 0.8,
and (c) 𝛽 = 1.

In order to find the solution of (46), we first find the solution
of (47). By taking the Laplace transformon both sides of (47),
we have

L {
𝑐
𝐷
𝛽
0𝑥 (𝑡)} = −L {𝑥 (𝑡)} . (48)

It follows that

𝑠
𝛽
L {𝑥 (𝑡)} − 𝑥 (𝑡0) 𝑠

𝛽−1
= −L {𝑥 (𝑡)} . (49)

After simplifying, we get

L {𝑥 (𝑡)} =
𝑥0𝑠
𝛽−1

𝑠𝛽 + 1
. (50)

By taking the inverse Laplace transform to (50), we obtain

𝑥 (𝑡) = 𝑥0L
−1
{
𝑠
𝛽−1

𝑠𝛽 + 1
} , (51)

which finally has the following solution:

𝑥 (𝑡) = 𝑥0𝐸𝛽 (−𝑡
𝛽
) , (52)

where 𝐸𝛽(∗) is the Mittag-Leffler function. Using Zadeh’s
extension principle to (52) in relation to 𝑥0, we obtain the
solution of (46) as follows:

𝑋(𝑡) = 𝑋0𝐸𝛽 (−𝑡
𝛽
) . (53)

Let [𝑋(𝑡)]𝛼 = [𝑥𝛼1 (𝑡), 𝑥
𝛼
2 (𝑡)] and 𝑋0 = (2, 3, 4) where [𝑋0]

𝛼
=

[𝛼+2, 4−𝛼] for 𝛼 ∈ [0, 1]; then the first ten terms of (52) can
be expressed as follows:

𝑥
𝛼
1 (𝑡) = (𝛼 + 2) (−1 −

𝑡
𝛽

Γ (𝛽 + 1)
−

𝑡
2𝛽

Γ (2𝛽 + 1)

−
𝑡
3𝛽

Γ (3𝛽 + 1)
−

𝑡
4𝛽

Γ (4𝛽 + 1)
−

𝑡
5𝛽

Γ (5𝛽 + 1)

−
𝑡
6𝛽

Γ (6𝛽 + 1)
−

𝑡
7𝛽

Γ (7𝛽 + 1)

−
𝑡
8𝛽

Γ (8𝛽 + 1)
−

𝑡
9𝛽

Γ (9𝛽 + 1)
) ,
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Table 2: Numerical solutions of Example 2 with different values of 𝛽.

𝛼
𝛽 = 0.6 𝛽 = 0.8 𝛽 = 1

𝑥
𝛽
1 (𝑡) 𝑥

𝛽
2 (𝑡) 𝑥

𝛽
1 (𝑡) 𝑥

𝛽
2 (𝑡) 𝑥

𝛽
1 (𝑡) 𝑥

𝛽
2 (𝑡)

0.0 0.000024 0.000048 0.016304 0.032608 0.265239 0.530478
0.1 0.000025 0.000047 0.017119 0.031793 0.278501 0.517216
0.2 0.000026 0.000046 0.017934 0.030978 0.291763 0.503954
0.3 0.000027 0.000044 0.018750 0.030163 0.305024 0.490692
0.4 0.000029 0.000043 0.019565 0.029347 0.318286 0.477430
0.5 0.000030 0.000042 0.020380 0.028532 0.331548 0.464168
0.6 0.000031 0.000041 0.021195 0.027717 0.344810 0.450906
0.7 0.000032 0.000040 0.022010 0.026902 0.358072 0.437644
0.8 0.000033 0.000038 0.022826 0.026087 0.371334 0.424382
0.9 0.000035 0.000037 0.023641 0.025271 0.384596 0.411120
1.0 0.000036 0.000036 0.024456 0.024456 0.397858 0.397858

𝑥
𝛼
2 (𝑡) = (4 − 𝛼)(−1 −

𝑡
𝛽

Γ (𝛽 + 1)
−

𝑡
2𝛽

Γ (2𝛽 + 1)

−
𝑡
3𝛽

Γ (3𝛽 + 1)
−

𝑡
4𝛽

Γ (4𝛽 + 1)
−

𝑡
5𝛽

Γ (5𝛽 + 1)

−
𝑡
6𝛽

Γ (6𝛽 + 1)
−

𝑡
7𝛽

Γ (7𝛽 + 1)

−
𝑡
8𝛽

Γ (8𝛽 + 1)
−

𝑡
9𝛽

Γ (9𝛽 + 1)
) .

(54)

Clearly, (54) are the valid 𝛼-cuts of the solution of (46). By
using Algorithm 1 with the same interval 𝑡 and interval 𝑁
as in Example 1, the numerical solutions of (46) for different
values of 𝛽 are plotted in Figure 2. Again, we can see that
the numerical solutions will approach the numerical solution
of fuzzy differential equation as 𝛽 increases to 1. Numerical
solutions at 𝑡 = 2 for different values of 𝛽 are listed in Table 2.

In the following example, we provide detailed procedures
for solving a nonlinear fuzzy fractional differential equation.

Example 3. Let us consider the following problem:

𝑐
𝐷
𝛽
0𝑋 (𝑡) = cos (𝑡𝑋) ,

𝑋 (0) = 𝑋0,

(55)

where 𝛽 ∈ (0, 1], 𝑡 = [0, 5], and 𝑋0 is any triangular fuzzy
number.

To solve this problem, we use Algorithm 2. First, let
[𝑋0]
𝛼
= [𝑥
𝛼
0,1, 𝑥
𝛼
0,2]. We discretise 𝛼 up to 11 points, which

are 𝛼0 = 0 < 𝛼1 = 0.1 < ⋅ ⋅ ⋅ < 𝛼10 = 1. Let 𝑋0 = 𝑊0; then we
have

𝑤
𝛼
10

1,1 = 𝑔 (𝛽, ℎ, 𝑡0, 𝑤
𝛼
10

0,1 ) = 𝑔 (𝛽, ℎ, 𝑡0, 𝑤
𝛼
10

0,2 ) = 𝑤
𝛼
10

1,2 ,

𝑤
𝛼9
2,1 = min[

[

min
𝑢∈[𝑤
𝛼9

1,1
,𝑤
𝛼10

1,1
]
𝑔 (𝛽, ℎ, 𝑡1, 𝑢) , 𝑤

𝛼10
1,1 , min
𝑢∈[𝑤
𝛼10

1,2
,𝑤
𝛼9

1,2
]
𝑔 (𝛽, ℎ, 𝑡1, 𝑢)]

]

,
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Figure 2: The numerical solutions of (46) for (a) 𝛽 = 0.6, (b) 𝛽 =
0.8, and (c) 𝛽 = 1.

𝑤
𝛼9
2,2 = max[

[

max
𝑢∈[𝑤
𝛼9

1,1
,𝑤
𝛼10

1,1
]

𝑔 (𝛽, ℎ, 𝑡1, 𝑢) , 𝑤
𝛼10
1,2 , max
𝑢∈[𝑤
𝛼10

1,2
,𝑤
𝛼9

1,2
]

𝑔 (𝛽, ℎ, 𝑡1, 𝑢)]

]

,

...

𝑤
𝛼
0

𝑁+1,1
= min[ min

𝑢∈[𝑤
𝛼0

𝑁,1
,𝑤
𝛼1

𝑁,1
]

𝑔 (𝛽, ℎ, 𝑡
𝑁
, 𝑢) , 𝑤

𝛼
1

𝑁,1
, min
𝑢∈[𝑤
𝛼1

𝑁,2
,𝑤
𝛼0

𝑁,2
]

𝑔 (𝛽, ℎ, 𝑡
𝑁
, 𝑢)] ,

𝑤
𝛼
0

𝑁+1,2
= max[ max

𝑢∈[𝑤
𝛼0

𝑁,1
,𝑤
𝛼1

𝑁,1
]

𝑔 (𝛽, ℎ, 𝑡
𝑁
, 𝑢) , 𝑤

𝛼
1

𝑁,2
, max
𝑢∈[𝑤
𝛼1

𝑁,2
,𝑤
𝛼0

𝑁,2
]

𝑔 (𝛽, ℎ, 𝑡
𝑁
, 𝑢)] ,

(56)
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Table 3: Numerical solutions of Example 3 with different values of 𝛽.

𝛼
𝛽 = 0.6 𝛽 = 0.8 𝛽 = 1

𝑥
𝛽
1 (𝑡) 𝑥

𝛽
2 (𝑡) 𝑥

𝛽
1 (𝑡) 𝑥

𝛽
2 (𝑡) 𝑥

𝛽
1 (𝑡) 𝑥

𝛽
2 (𝑡)

0.0 0.316778 0.316778 0.320052 0.320052 0.328592 1.645658
0.1 0.316778 0.316778 0.320052 0.320052 0.328592 1.645476
0.2 0.316778 0.316778 0.320052 0.320052 0.328593 1.643608
0.3 0.316778 0.316778 0.320052 0.320052 0.328594 0.328664
0.4 0.316778 0.316778 0.320052 0.320052 0.328594 0.328629
0.5 0.316778 0.316778 0.320052 0.320052 0.328595 0.328617
0.6 0.316778 0.316778 0.320052 0.320052 0.328596 0.328610
0.7 0.316778 0.316778 0.320052 0.320052 0.328597 0.328606
0.8 0.316778 0.316778 0.320052 0.320052 0.328598 0.328604
0.9 0.316778 0.316778 0.320052 0.320052 0.328599 0.328602
1.0 0.316778 0.316778 0.320052 0.320052 0.328600 0.328600

0 1 2 3 4 5
0

2
4

6
0

0.5

1

𝛼

t
X(t)

(a)

0 1 2 3 4 5
01234

0

0.5

1

𝛼
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01234

0
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𝛼

t
X(t)

(c)

Figure 3: The approximate solutions of (55) for (a) 𝛽 = 0.6, (b)
𝛽 = 0.8, and (c) 𝛽 = 1.

where

𝑔 (𝛽, ℎ, 𝑡𝑖, 𝑢) = 𝑢 +
ℎ
𝛽

Γ (𝛽 + 1)
cos (𝑡𝑖𝑢) , 𝑢 ∈ [𝑤

𝛼
𝑗

𝑖,1, 𝑤
𝛼
𝑗

𝑖,2]

(57)

for 𝑖 = 0, 1, . . . , 𝑁 and 𝑗 = 0, 1, . . . , 10.
Let 𝑋0 = (0, 𝜋/2, 𝜋) and𝑁 = 200; then these procedures

will result in the approximate solutions of (55) at different
values of 𝛽 as plotted in Figure 3. From the graphs, we can

see that the numerical solutions approach to the numerical
solution of fuzzy differential equation as 𝛽 approaches 1.
Numerical solutions at 𝑡 = 5 at different values of 𝛽 are listed
in Table 3.

5. Conclusions

In this paper, we have studied a fuzzy fractional differential
equation and presented its solution using Zadeh’s extension
principle.The classical fractional Euler method has also been
extended in the fuzzy setting in order to approximate the
solutions of linear and nonlinear fuzzy fractional differential
equations. Final results showed that the solution of fuzzy
fractional differential equations approaches the solution of
fuzzy differential equations as the fractional order approaches
the integer order.
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