

IMPLEMENTATION AND ANALYSIS OF GMM-BASED SPEAKER IDENTIFICATION ON FPGA

edby by

ÞHAKLEN AL EHKAN (1040210486)

Thisitemispr A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

School of Computer and Communication Engineering UNIVERSITI MALAYSIA PERLIS

2012

IMPLEMENTATION AND ANALYSIS OF GMM-BASED SPEAKER IDENTIFICATION ON FPGA

UNIVERSITI MALAYSIA PERLIS 2012

UNIVERSITI MALAYSIA PERLIS

DECLARATION OF THESIS			
Author's full name	: PHAKLEN AL EH	IKAN	
Date of Birth	: 23-09-1969		
Title	: IMPLEMENTATI	ON AND ANALYSIS OF GMM-BASED	
	SPEAKER IDENT	IFICATION ON FPGA	
Academic Session	: Semester II – 2011	/2012	
I hereby declare that	the thesis becomes the	e property of Universiti Malaysia Perlis	
(UniMAP) and to be	placed at the library o	f UniMAP. This thesis is classified as:	
CONFIDEN	TIAL (Contains con Secret Act 19	nfidential information under the Official	
RESTRICE	D (Contains res	Stricted information as specified by the	
	organization	where research was done)*	
OPEN ACCESS Lagree that the thesis is to be made immediately			
	available as h	hard copy or on-line open access (full text)	
I, the author, give permission to the UniMAP to produce this thesis in whole or in part			
for the purpose of re-	search or academic exo	change only (except during a period of	
years, of so requested above).			
©		Certified by:	
SIGNATURE		SIGNATURE OF SUPERVISOR	
NEW IC NO. / PASSPORT NO.)		NAME OF SUPERVISOR	
Date:		Date:	

NOTES: * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentially or restriction.

ACKNOWLEDGEMENT

Firstly, I wish to thank The Vice Chancellor, Brigadier General Dato' Professor Dr. Kamarudin Bin Hussin for his constant encouragement and facilities provided at the Universiti Malaysia Perlis for the completion of this research.

I am greatly indebted to my main supervisor, Dean of the School of Computer and Communication Engineering, Universiti Malaysia Perlis, Professor Dr. R. Badlishah Ahmad for his valuable guidance, inspiring advice and continue encouragement as well as support at all stages of this thesis work.

I am also grateful to Dr. Steven F. Quigley and Mr. Timothy Allen from the University of Birmingham for their support, timely suggestion and facilities provided for the completion of this work. I thank them for constantly encouraging me to complete this work.

I wish to thank the Malaysia Ministry of Higher Education for providing the research grants, FRGS9003-00279 under the Fundamental Research Grant Scheme, which funded research work.

Last but not least, I owe my deepest gratitude to my beloved family; parent, wife - Nui Din Keraf, children - Sarayuth Prommanop, Saranyaa Prommanop and Sara Suphamaard Prommanop who have been supported and always behind me throughout my study.

TABLE OF CONTENTS

			Page
AC	KNOW	/LEDGEMENT	i
TABLE OF CONTENTS			ii
LIS	ST OF 7	TABLES	vi
LIS	ST OF F	FIGURES	vii
LIS	ST OF A	ABBREVIATIONS	ix
LIS	ST OF S	SYMBOLS	xi
AB	STRA	K OK	xii
AB	STRAG	T	xiii
		ed t	
1	INT	RODUCTION	1
	1.1	Research Background	3
	1.2	Field Programmable Gate Array (FPGA)	7
	1.3	Research Motivation	12
	1.4	Problem Statement	13
X	1.5	Objectives	14
\bigcirc	1.6	Scope	14
	1.7	Significant and Contribution of the Research	15
	1.8	Thesis Organization	16
2	LITI	FRATURF REVIEW	18
-	2.1		18
	2.1	Speaker Identification	21
	2.2	Speaker Verification	21
	2.3	Front-end Processing	22 24
	<i></i> . 1	110110 0110 1100000115	<i>⊥</i> T

		2.4.1	Mel Free	quency Cepstral Coefficients (MFCCs)	26
			2.4.1.1	Frame Blocking	28
			2.4.1.2	Windowing	29
			2.4.1.3	Fast Fourier Transform (FFT)	29
			2.4.1.4	Mel-Frequency Warping	30
			2.4.1.5	Cepstrum	30
	2.5	Pattern	Classific	cation	31
		2.5.1	Evolutio	n of Pattern Classification Technique in	32
			Speaker	Identification	
		2.5.2	Dynami	c Time Warping (DTW)	33
		2.5.3	Hidden	Markov models (HMM)	35
		2.5.4	Vector (Quantization (VQ)	38
		2.5.5	Gaussia	n Mixture Models (GMM)	41
		2.5.6	Neural N	Jetworks (NN)	43
		2.5.7	Support	Vector Machines (SVM)	46
	2.6	Evalua	tion on S	everal Pattern Classification Techniques	48
	2.7	Compa	arison on	Several Pattern Classification Approaches	52
	2.8	Recent Work Progress on GMM in Speaker Identification		54	
	2.9	2.9 Summary		57	
3	TEX	T INDE	EPENDE	NT SPEAKER IDENTIFICATION	59
\smile	SYST	ГЕМ			
	3.1	System	n Overvie	W	60
	3.2	Front-	end Analy	ysis	61
	3.3	Gaussi	an Mixtu	re Model (GMM) Approach	64
	3.4	Traini	ng		65
		3.4.1	Initialisa	ation	66
		3.4.2	Expecta	tion Minimization (EM) Algorithm	67
	3.5	Classif	ication		69

	3.6	Summary	71
4	SYS	TEM DEVELOPMENT IN SOFTWARE PLATFORM	72
	4.1	Speech Scopus Database	72
	4.2	Implementation	73
	4.3	Test Data and Performance Measures	75
		4.3.1 Number of Components M, mfcc (0) and	77
		Data Normalization	
		4.3.2 Utterance Length	79
	4.4	Implications on Hardware Design	81
	4.5	Summary	81
5	SPE. REC	AKER IDENTIFICATION SYSTEM ON CONFIGURABLE HARDWARE	82
	5.1	Introduction	82
	5.2	Speaker Identification System to be implemented in Hardware	83
	5.3	System Specifications	85
	5.4	FPGA Specifications	85
	5.5	System Overview	87
	5.6	Log-Add Algorithm	90
		5.6.1 Log-Add Theory	91
		5.6.2 GMM equations with Log-Add Adaption	94
		5.6.3 Implementation of Log-Add Algorithm	95
	5.7	Log Probability Computational	99
		5.7.1 Logic Resources Requirement	101
		5.7.2 Decimal Place Manipulation to Maximize Accuracy	102
	5.8	Likelihood Computational	107
	5.9	Data Representation	108
	5.10	Summary	111

6	REQUIREMENT ANALYSIS AND RESULTS	112
	6.1 Memory Requirements	112
	6.2 Parallelism: Multiple Inputs and Multiple Speaker Models	114
	6.3 Testing	115
	6.3.1 Accuracy	115
	6.3.2 Timing	117
	6.3.3 Resources	119
	6.4 Summary	120
7	CONCLUSION AND RECOMMENDATION	122
	7.1 Conclusion	122
	7.2 Future work	125
	REFERENCES	128
	APPENDICES	141
	Appendix A	141
	Appendix B	142
	Appendix C	144
	Appendix D	153
\bigcirc	Appendix E	156
	Appendix F	158
	Appendix G	160

LIST OF TABLES

Table	Description	Page
2.0	Comparison on several pattern classification approaches	53
4.0	Results - Normalisation without mfcc(0)	77
4.1	Results - Normalisation with mfcc (0))	77
4.2	Results - Without Normalisation and without mfcc (0)	78
4.3	Results – Utterance Length	79
5.0	Hardware Resources Required for One Instance of	101
	Datapath in Figure 5.8	
6.0	Hardware and Software Results (Percentage Recognition	116
	Accuracy) for Testing with 5s Test Utterance	
6.1	Hardware and Software Results for Testing with 5 s of	118
	Test Utterance	
6.2	Logic Resources for MFCC Module	119
6.3	Logic Resources for Classification Module	120
© This it	emi	

LIST OF FIGURES

Figure	Description	Page
1.0	Speech Processing Branches	2
1.1	Illustration of a Logic Cell	8
1.2	FPGA Block Structure	9
1.3	Designing Flow of FPGA	10
2.0	The Human Vocal System Diagram	18
2.1	Basic Structure for Speaker Identification	21
2.2	Basic Structure for Speaker Verification	23
2.3	MFCC Block Module	27
2.4	Frame Blocking Short Term Analysis	28
2.5	DTW Model	35
2.6	HMM Finite State Generators	36
2.7	Conceptual Diagram Illustrating VQ Codebook Formation	39
2.8	A Multilayer Perceptron	44
2.9	Steps for Binary Linear Decision Boundary	47
3.0	Text Independent Speaker Identification System Block	60
inis	Diagram	
3.1	Front-end Processing Block Diagram	61
3.2	Hamming Window Technique	62
3.3	Triangle Filter Used to Compute Mel Cepstrum	63
3.4	Pseudo code for the Initialisation and EM Algorithm of	66
	GMM	
4.0	HTK Configuration File	74
4.1	Block Diagram of Software System	75

	4.2	Comparison Data from Experiment 1	78
	4.3	Results from Experiment 2	80
	5.0	RC2000 Reconfigurable Computing Board	86
	5.1	Top-level of Speaker Identification Classification	87
	5.2	Three Main Segments of Datapath	88
	5.3	ASM chart for Six States of FSM	89
	5.4	Binary Representation of a Decimal Number	90
	5.5	Log-Add Hardware for Two Elements Summation	94
	5.6	Log-Add Algorithm Architecture	97
	5.7	Log-Add Algorithm and Supporting Circuitry	98
	5.8	Datapath Diagram Showing the Calculation of	100
		Equation 5.7	
	5.9	Reduction in Word Size of Multiplier Output	103
	5.10	Aligning Binary Numbers	105
	5.11	Aligning Binary Numbers with No Shift to the Left	106
	5.12	8-Bits Tree Structure Comparator	107
	Sit		
	Zh,		
(\bigcirc		

LIST OF ABBREVIATIONS

	ADC	Analogue-to-Digital Converter
	ANN	Artificial Neural Network
	ALU	Arithmetic Logic Unit
	ASIC	Application Specific Integrated Circuit
	ASM	Algorithmic State Machines
	BRAM	Block RAM
	CMN	Cepstral Mean Normalisation
	CPU	Central Processing Unit
	DCT	Discrete Cosine Transform
	DSP	Digital Signal Processing
	DTW	Dynamic Time Warping
	EM	Expectation Maximization
	FFT	Fast Fourier Transform
	FPGA	Field Programmable Gate Array
	FSM	Finite State Machines
	GMM	Gaussian Mixture Model
	HDL	Hardware Description Language
(НММ	Hidden Markov Model
	LBG	Linda, Buzo and Gray
	IC	Integrated Circuit
	IEEE	Institute of Electrical and Electronics Engineers
	LSB	Least Significant Bit
	LPC	Linear Predictive Coefficient
	LUT	Look Up Table
	MFCC	Mel Frequency Cepstral Coefficient
	ML	Maximum Likelihood

MLP	Multi-Layer Perceptron
MSB	Most Significant Bit
NIST	National Institute of Standards and Technology
NN	Neural Network
PIN	Personal Identification Number
PLP	Perceptual Linear Prediction
RAM	Random Access Memory
RASTA	RelAtive SpecTrAl
SVM	Support Vector Machine
VHDL	VHSIC-Hardware Description Language
VHSIC	Very High Speed Integrated Circuit
VQ	Vector Quantization

Lardwa Very High Spee Vector Quantization Vector Quantization Vector Quantization Vector Quantization

LIST OF SYMBOLS

c _n	Ceptral Coefficients
\mathbf{f}_{c}	Central frequency
$f_{c + 1}$	Upper pass band
f _{c -1}	Lower pass band
f _s	Sampling frequency
i	i ^{th.} component in GMM
L(λ)	Log likelihood of event λ
mfb	Mel filter bank
n	Samples being evaluated
Ν	Samples number of windows
NF	Number of filter
$p(i x, \lambda)$	Probability of event i given event x and λ
p (x)	Probability of event x
$p(\mathbf{x} \lambda)$	Probability of event x given event λ
s	Speaker
se	Size of Speaker
Sk	Mel-scaled signal
w	Component weight
X	Series of feature vectors
х	Individual feature vectors
X ij	Feature vectors
Σ	Covariance
μ	Mean
σ	Covariance Diagonal

PERLAKSANAAN DAN ANALISIS PENGENALPASTIAN PENUTUR BERDASARKAN GMM MENGGUNAKAN FPGA

ABSTRAK

Penggunaan satu sistem pengenalpastian yang mempunyai ketepatan sangat tinggi diperlukan dalam masyarakat kini. Sistem sedia ada seperti nombor pin dan kata laluan mudah dilupai atau dipalsukan dan bukan lagi menawarkan tahap keselamatan yang tinggi. Penggunaan ciri-ciri biologi (biometrik) diterima secara meluas sebagai tahap sistem keselamatan yang lebih tinggi. Salah satu biometrik adalah suara manusia dan ianya menerajui dalam tugas pengenalpastian penutur. Pengenalpastian penutur adalah proses untuk menentukan samada penutur wujud di dalam kumpulan yang telah diketahui dan mengenalpasti penutur di dalam kumpulan itu sendiri. Ciri-ciri penutur wujud dalam isyarat suara disebabkan penutur yang berbeza mempunyai saluran vokal resonan yang berbeza. Perbezaan mi boleh diperlakukan dengan mencungkil Koefisien Kepstral Frekuensi-Mel (MFCC) daripada isyarat suara. Proses pemodelan statistik yang dikenali sebagai Model Bercampur Gaussian (GMM) digunakan untuk memodel taburan setiap MFCC penutur dalam ruang akustik multidimensi. GMM terlibat dengan dua fasa iaitu latihan dan pengkelasan. Fasa latihan sangat kompleks dan ianya lebih sesuai dilaksanakan dengan menggunakan perisian. Fasa pengkelasan pula lebih sesuai untuk dilaksanakan menggunakan perkakasan dan ini membenarkan pemprosesan aliran suara masa nyata yang banyak bagi saiz populasi yang besar. Beberapa teknik inovasi telah menunjukkan bahawa sistem perkakasan mendapatkan nilai kelajuan yang lebih tinggi berbanding dengan perisian dengan mengekalkan tahap ketepatan sistem itu sendiri. Melalui pendekatan ini, faktor kelajuan sebanyak lapan puluh enam kali ganda di atas perkakasan FPGA berbanding dengan perlaksanaan menggunakan perisian telah dicapai.

IMPLEMENTATION AND ANALYSIS OF GMM-BASED SPEAKER IDENTIFICATION ON FPGA

ABSTRACT

The use of highly accurate identification systems is required in today's society. Existing systems such as pin numbers and passwords can be forgotten or forged easily and they are no longer considered to offer a high level of security. The use of biological features (biometrics) is becoming widely accepted as the next level for security systems. One of the biometric is the human voice and it leads to the task of speaker identification. Speaker identification is the process of determining whether a speaker exists in a group of known speakers and identifying the speaker within the group. Speaker specific characteristics exist in speech signals due to different speakers having different resonances of the vocal tract. These differences can be exploited by extracting Mel-frequency Cepstral Coefficients (MFCCs) from the speech signal. A statistical modelling process known as Gaussian Mixture Model (GMM) is used to model the distribution of each speaker's MFCCs in a multi-dimensional acoustic space. GMM involves with two phases called training and classification. The training phase is complex and is better suited for implementation in software. The classification phase is well suited for implementation in hardware and this allows for real time processing of multiple voice streams on large population sizes. Several innovative techniques are demonstrated which enable hardware system to obtain two orders of magnitude speed up over software while maintaining comparable levels of accuracy. A speedup factor of eighty six is achieved on hardware-based FPGA compared to a software implementation on a standard PC for this approach.

CHAPTER 1

INTRODUCTION

Speaker recognition, also known as voice recognition is the task of recognizing people from their voice signals (Doddington, 1985). It has a history dating back some few decades where the output of several analogue filters was averaged over time for matching. Speaker recognition uses the acoustic features of speech that have been found to differ between individuals. These acoustic patterns reflect both anatomy (size and shape of the throat and mouth) and learned behavioural patterns such as voice pitch and speaking style. This incorporation of learned patterns into the voice templates has earned speaker recognition its classification as a "behavioural biometric" (Furui, 1994).

The evolution of speaker recognition is quantum jump in artificial intelligence and technology of forensic science because it endows machines with the human-like abilities to distinguish people's identity from one another (Judith, 2000). Speaker recognition technologies are currently applying in many daily applications ranging from police work to automation of call centres. These include the access control system, security control for confidential information, transaction authentication as well as the telephone banking.

The success of speaker recognition system depends largely on how to classify a set of feature used to characterize speaker specific information (Jiuqing and Qixiu, 2003; Sorensen and Savic, 1994). However, pattern classification from speech signal

remains as a challenging problem encountered in general speaker recognition system, including speaker verification and speaker identification. Recent development in classifying speaker data from a group of speakers is still insufficient to provide a satisfying result in achieving high performance pattern classification. There are two main difficulties in pattern classification field; first, how to maintain accuracy under incremental amounts of training data and second, how to reduce the processing time as real time systems regarding efficiency and simplicity of calculation (He and Zhao, 2003; Campbell, 2002).

Figure 1.0 Speech Processing Branches (Campbell, 1997)

Figure 1.0 shows the relationship between speech processing and speaker identification branch. Speaker identification is among the most popular method for biometric techniques rely on some physical features that can be unique attributed to an individual besides the iris scanning, face recognition, and digital fingerprint identifications are

extremely accurate indicators of the identity of individual compared to the speaker identification but it is an upcoming and promising technique. Speaker identification systems are popular in spite of their poorer accuracy vis-à-vis the other techniques mentioned earlier because they are the least expensive to build as well as non-invasive in nature (Reynolds, 1995).

In this project, the development in classifying speaker data from a group of speakers is performed on hardware using RC2000 FPGA platform. A satisfying analysis result of the hardware versus software comparison has demonstrated that speaker identification classification is eighty six times faster in hardware. The developed system is capable of processing eighty six times more audio streams in real time than could be done by desktop computer.

1.1 Research Background

The building of robust speaker recognition system is always difficult because of the dynamic speech signal and influences from many sources of variation. There have seen significant progress being made to deal with this problem using different techniques in the past two decades (Sadaoki, 1997). The problem of speaker recognition belongs to a much broader topic in scientific and engineering so called pattern classification. The goal of pattern classification is to classify objects of interest into a number of categories or classes (Richard, Peter, and David, 2000). The categories or classes here are referred to the individual speakers. The pattern classification plays as an essential part in speaker modelling component chain. The results of it strongly affect the speaker recognition engine to decide whether to accept or reject a speaker. Early pattern classification was produced by Sakoe and Chiba (1978) and Jingwei et al. (2002) through DTW technique and Lawrence (1989) of HMM technique. These techniques are not really efficient for real time application due to characteristic of text dependent recognition. VQ (Vlasta and Zdenek, 1999), GMM and SVM (Solera et al., 2007) as the alternative methods were introduced for speaker recognition to solve the problem. Besides, the GMM classification is the focus of research after Reynolds and Rose (1995) demonstrated its effective performances in text independent speaker identification. The GMM technique of pattern classification in previous studies appeared to have several advantages. However, the process practically does not always produce satisfied result due to the long computational time (Hong et al., 2004; Reynolds and Campbell, 2007). Consequently, alternative methods must be sought in order to reduce processing time problem for GMM technique.

There are some hybrid methods for speaker pattern classification. They draw the attention of the researchers because it was proved with significant improvement for speaker recognition accuracy rates such as hybrid GMM/ANN (Xiang and Berger, 2003), hybrid GMM/VQ (Pelecanos et al., 2000) and hybrid GMM/SVM (Fine et al., 2001; Minghui et al., 2006). Fenglei and Bingxi (2003) claimed that most of these hybrid systems use GMM because it was able be performed in a completely text independent situation. Performance of speaker recognition systems in term of accuracy rate has been significantly improved over hybrid conditions. However, Moon et al., (2003) declared that when speaker recognition is adopted in real-world application,

processing time issue is often observed. Meanwhile, current works for the hybrid production of speaker recognition are directed more towards accuracy problems, not processing time problems. Therefore, it is encouraging if a speaker recognition task can be conducted in a "good and fast" pattern classification machine such as in FPGAbased hardware implementation.

To date, most attempts to apply FPGA processing to speech problems focused on the problem of speech recognition (Melnikoff et al., 2002, Miura et al., 2008; Yoshizawa et al., 2006; Lin and Rutenbar, 2009) in which an acoustic speech signal was converted to a text representation of what the speaker has said. Some researchers have been motivated by the desire to achieve a large speedup over real time in order to accelerate searches of multimedia databases. For example, Lin and Rutenbar (2009) demonstrated a 17 times speedup over real time whilst maintaining good recognition accuracy. Other researchers aimed to achieve real-time recognition performance comparable to that of a standard microprocessor, but at much lower power dissipation. For example, Yoshizawa et al. (2006) demonstrated a 10 times improvement in total energy dissipation over a system based on a TMS320VC5416 DSP for real time recognition tasks. Relatively few researchers have investigated the problem of hardware implementation of speaker identification, and these do not aimed to achieve large speedups of performance, but instead to achieve identification using hardware at lower cost than a standard computer system. The speaker identification hardware of (Ramos-Lara et al., 2009) achieved performance comparable to that of a Pentium IV computer for a single voice stream, but using only 24% of the resources of a low cost Xilinx Spartan 3 2000 FPGA.

The hardware implementations initially tended to be based on parallel arrays of one kind or another, often using customize chips. As the technology improved, the focus has shifted towards serial implementations, making use once again of customize chips such as application specific integrated circuits (ASICs), microcontrollers or DSPs. Since the appearances of FPGA, that too has been used as a platform of experimental. ASICs customized for a particular use are very expensive even though they provide the highest performance. DSP-based designs, on the other hand, are cost efficient and low in power consumption and heat-emission. However, they only provide a limited speed for data processing because using special memory architectures that are able to fetch multiple data and/or instructions at the same time, they are susceptible to arithmetic saturation. FPGAs are usually slower than ASICs but have the advantage of shorter time to market, ability to be re-programmed in the field for errors correction and upgrades, flexibility, and reducing-cost. Therefore, they combine many advantages of ASICs and DSPs. The use of hardware description languages (HDLs) allows FPGAs to be more suitable for different types of designs where errors and components failures can be limited. Due to the exponential increase of technologies, designers are faced with problems that require the advent of systems that can be fast, flexible, and mainly re-programmable. FPGAs, because of their advantage of real-time in-circuit reconfigurability, make the FPGA based system flexible, programmable, and reliable. They also facilitate the prototyping of complex electronic logic designs.

Recent FPGA shave a very high logic capacity and contain embedded Arithmetic Logic Units (ALUs) to optimize signal processing performance (Brown and Rose, 1996 and Battle et al., 2002). The newest generations of design tools offer libraries of common DSP functions, enabling developers to implement complex systems within a reasonable space of time. FPGAs have been used in many areas to accelerate algorithms that can make use of massive parallelism and improving flexibility. FPGAs are able to exploit pipelining and parallelism in a much more thorough way that can be done with parallel computers using general-purpose microprocessors or a single standard processor (Maslennikov, 2006; Sumedh and Bhoyar, 2012).

Field Programmable Gate Array (FPGA) 1.2

COPYTER FPGA is a type of semiconductor device that contain programmable logic and interconnections which mostly used in logic or digital electronic circuits. The programmable logic components or logic blocks as they are known may consist of anything from logic gates, through to memory elements or blocks of memories, or almost any element. FPGA supports thousands of gates and popular for prototyping integrated circuit (IC) designs. Once a design is set, hardwired chips will be produced to faster performance. FPGA chip is programmable and reprogrammable which is considered as an advantage of it. In this way, it becomes a large logic circuit that can be configured according to a design, but if changes are required it can be reprogrammed with an update. Thus, if circuit board is manufactured and contains an FPGA as part of the circuit, then this is programmed during the manufacturing process, but can be reprogrammed to reflect any changes. The user programmability gives the user access to complex ICs without the high engineering costs associated with ASICs.

FPGA contains many identical logic cells that can be viewed as standard components. Each design is implemented by specifying the simple logic function for each cell and selectivity closing the switches in the interconnect matrix. The array logic cells and interconnects form a basic building blocks for logic circuits. Complex designs are created by combining these basic blocks to create the desired circuit. The logic cell architecture varies between different device families.

Figure 1.1 Illustration of a Logic Cell (FPGA, 2011)

Figure 1.1 shows a simplified illustration of a logic cell. Each logic cell combines few binary inputs to one or two outputs according to a Boolean logic function specified in the user program. In most families, the user also has the option of registering the combinatorial output of the cell, so that clocked logic can be easily implemented. The cells combinatorial may be physically implemented as a small look-up-table (LUT) memory or as a set of multiplexers and gates. LUT devices tend to be a bit more flexible and provide more input cell than multiplexer cells at the expense of propagation delay.