STRUCTURAL DAMAGE DETECTION IN STEEL PLATES USING ARTIFICIAL NEURAL NETWORKS

PRENESE KRISHNANR othistemispote

> UNIVERSITI MALAYSIA PERLIS 2011

Structural Damage Detection in Steel Plates using Artificial Neural Networks

by

copyright PRENESH KRISHNAN R (0730610210)xected 10

A thesis submitted in fulfillment of the requirements for the degree of Master of Science (Mechatronic Engineering) OTHISTER

> **School of Mechatronic Engineering UNIVERSITI MALAYSIA PERLIS**

> > 2011

UNIVERSITI MALAYSIA PERLIS

DECLARATION OF THESIS		
Author's full name	:	R. PRENESH KRISHNAN
Date of birth	:	13.12.1983
Title	:	STRUCTURAL DAMAGE DETECTION IN STEEL PLATES USING
		ARTIFICIAL NEURAL NETWORKS
Academic Session	:	2010 - 2011
I hereby declare that the thesis becomes the property of Universiti Malaysia Perlis (UniMAP) and to be placed at the libra of UniMAP. This thesis is classified as : Image: CONFIDENTIAL Image: CONFIDENTIAL Image: Contains confidential information under the Official Secret Act 1972)* Image: Contains restricted information as specified by the organization where Image: research was done)* Image: Contains restricted information as specified by the organization where Image: research was done)* Image: Contains restricted information as specified by the organization where Image: research was done)* Image: Contains restricted information as specified by the organization where Image: research was done)* Image: restrict was done)* Image: rese		
I, the author, give permi	ssion to	the UniMAP to reproduce this thesis in whole or in part for the purpose of research or
academic exchange only (except during a period of years, if so requested above).		
SIGNA	TURE	SIGNATURE OF SUPERVISOR
G0266145		Prof. Madya. Dr. Paulraj Murugesa Pandiyan
(NEW IC NO. /	/ PASSPO	ORT NO.) NAME OF SUPERVISOR
Date :		Date :

NOTES : * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period andreasons for confidentially or restriction.

ACKNOWLEDGEMENT

I would like to extend my sincere gratitude to the Vice Chancellor of UniMAP, Brigedier Jeneral Dato' Prof. Dr. Khamarudin b. Hussin for his constant encouragement throughout my study.

I extend my wholehearted thankfulness to **Prof. Dr. Sazali Bin Yaacob**, Deputy Vice Chancellor, UniMAP for his unconditional support and motivation right through my research work and who has also co-supervised my research work.

I also wish to extend my honest appreciation to highly respected dignified, **Prof. Dr. Nagarajan**, Mechatronic Engineering Programme, School of Mechatronic Engineering, UniMAP for his constant inspiration all the way through my research work.

I would like to express my profound gratefulness to **Prof. Madya. Dr. Abdul Hamid Adom**, Dean, School of Mechatronic Engineering, UniMAP for providing support and encouragement throughout my research work.

I am very fortunate to have a kindhearted person to guide me throughout my research and would like to show my heartfelt sincere gratitude to my beloved mentor, and first Supervisor **Prof. Madya. Dr. Paulraj Murugesa Pandiyan**, Mechatronic Engineering Programme, School of Mechatronic Engineering, UniMAP for his invaluable guidance, support, and enthusiasm. I am greatly indebted for his inspiration and thirst for knowledge and research which helped me to groom and nurture myself throughout my research work. His continuous motivation helped me to complete my research successfully.

I wish to extend my deep gratitude to Mr. Mohd Shukry Bin Abdul Majid, Lecturer, Mechatronic Engineering Programme, School of Mechatronic Engineering, UniMAP for his valuable guidance and funding support during my research work and also co-supervised my research work.

I extend my sincere gratitude to **Ms. Marhainis Othman**, Lecturer, Mechatronic Engineering Programme, School of Mechatronic Engineering, UniMAP, for her funding support and timely help during my research work.

I wish to express my appreciation to **Dr. Cheng Ee Meng**, Senior Lecturer, Biomedical Electronic Engineering Programme, School of Mechatronic Engineering, UniMAP, for his kind help during my research work.

I would like to thank, the members of staff, School of Mechatronic Engineering, Research and Development, Library, ICT, Bendahari and Postgraduate studies for their kind and needful assistance, encouragement and support during my research work.

I would like to express my deep appreciation to all my fellow friends and members of the Acoustic Applications Research Cluster and the members of the Research Laboratory and other research clusters for their endless support and motivation.

I wish to extend my earnest and sincere appreciation to my uncle **Prof. Dr. T. Manigandan**, Dean, School of Electrical Sciences, Kongu Engineering College, Perundurai, India, for his constant support and motivation during my research work. I would like to extend my earnest gratitude to my beloved parents, brother, relatives and friends for their constant encouragement during the course of my research work.

Finally I would like to express my deep gratitude to the Ministry of Science, Technology and Innovation (MOSTI) and the Government of Malaysia for providing me an opportunity to accomplish my research and studies.

iii

TABLE OF CONTENTS

CON	ITENTS	PAGE NO
THE	SIS DECLARATION	i
ACK	NOWLEDGEMENT	ii
TAB	LE OF CONTENTS	iv
LIST	T OF TABLES	х
LIST	r of figures	XV
LIST	T OF ABBREVIATIONS	xxiii
LIST	T OF SYMBOLS	xxiv
ABS	TRAK	xxvii
ABS	TRACT	xxviii
СНА 1.1 1.2	PTER 1 INTRODUCTION Preamble Motivation towards the research	1 1
1.3 1.4	Problem statement Research approach	2 3
1.5	Research objective and significance	3
1.6	Contraction Thesis organization	4
CHA DET	APTER 2 LITERATURE REVIEW OF STEEL PLATE DAMA	GE
2.1	Introduction	6
2.2	Damage	6
2.3	Structural health monitoring	6
2.4	Approach towards damage detection in steel plates	7
	2.4.1 Modal based methods	10

	2.4.2	Wavelet analysis	12
	2.4.3	Neural network modeling	13
	2.4.4	Fuzzy modeling	14
2.5	Other	relevant damage detection methods	15
2.6	Dama	ge detection methodology	16
2.7	Summ	ary	17
CHA	PTER 3	EXPERIMENTAL DESIGN AND DATA COLLECTION	
3.1	Introd	uction	18
3.2	Modal	analysis	18
3.3	Dama	ge detection using experimental modal analysis	19
3.4	Exper	imental arrangement	19
	3.4.1	Suspension methods	20
	3.4.2	Simply supported steel plate	22
	3.4.3	Fixed (Hinged) free steel plate	22
	3.4.4	Selection of force and vibration transducers	24
	3.4.5	Data acquisition system	24
C	3.4.6	Roving hammer test	26
9	3.4.7	Roving accelerometer test	27
3.5	Data c	apturing arrangement and data collection procedure	30
	3.5.1	Selection of sampling frequency and bandwidth	30
	3.5.2	Simulated damages	31
	3.5.3	Protocol design for data collection	31
	3.5.4	Data collection procedure	38
	3.5.5	Vibration signal database	40
3.6	Summ	ary	42

CHAPTER 4 FEATURE EXTRACTION AND DATA PROCESSING

4.1	Introd	uction	43
4.2	Vibrat	ion signal preconditioning	43
4.3	Featur	re extraction	45
4.4	Featur	e extraction: frame energy method	45
	4.4.1	Signal trimming algorithm	47
	4.4.2	Calculation of frame energy based features	51
	4.4.3	Algorithm for extraction of frame energy based features	53
4.5	Featur	e extraction: DCT peak moment method	56
	4.5.1	Discrete cosine transformation	56
	4.5.2	DCT peak magnitude	57
	4.5.3	Extraction of DCT peak moment features	60
4.6	Featur	e extraction: change in DCT peak moment method	62
	4.6.1	Calculation of change in DCT peak moment	62
	4.6.2	Algorithm to extract the change in DCT peak moment features	62
4.7	Featur	e extraction: DCT peak value derivative method	64
	4.7.1	Calculation of DCT peak value derivatives	66
	4.7.2	Algorithm to extract DCT peak value derivative features	67
4.8	Featur	re extraction: DCT peak area method	68
	4.8.1	Calculation of DCT peak area coefficients	69
	4.8.2	Extraction of DCT peak area coefficients	70
4.9	Featur	re extraction: spectral band method	73
	4.9.1	Estimation of spectral bands using DFT coefficients	73
	4.9.2	Algorithm to extract of DFT Spectral band features	75

4.10	Data preprocessing	78
	4.10.1 Outlier identification and removal	78
	4.10.2 Data normalization and randomization	80
	4.10.3 Output labeling	81
	4.10.4 Feature reduction / dimensionality reduction	81
4.11	Summary	84
CHA FEEI	PTER 5 STEEL PLATES DAMAGE DETECTION USING DFORWARD NEURAL NETWORKS	
5.1	Introduction	85
5.2	Synopsis of artificial neural network	85
5.3	Motivations for the choice of ANN for steel plate damage detection	86
5.4	Neural network training and testing	87
	5.4.1 Falhman testing method	87
5.5	Architecture and design of multilayer feedforward neural network	88
5.6	Training multilayer feedforward neural network	89
	5.6.1 Levenberg marquardt training algorithm	89
	5.6.2 Choosing neural network parameters	90
	5.6.3 MLP neural network training	91
5.7	MLP network modeling	92
5.8	MLP training results	92
	5.8.1 Comparison of architectures for MLP models	99
	5.8.2 Comparison of mean classification accuracy for MLP models	101
	5.8.3 Comparison of mean sensitivity for MLP models	104
	5.8.4 Comparison of mean specificity for MLP models	107
	5.8.5 Comparison of mean number of epoches for MLP models	110

5.9	Architecture and design of radial basis functio	n neural network 112
	5.9.1 Choice of basis function and spread fac	ctor 113
5.10	Training radial basis function network	114
	5.10.1 RBF network training	114
5.11	RBF network modeling	115
5.12	RBF training results	116
	5.12.1 Comparison of architecture for RBF m	odels 123
	5.12.2 Comparison of mean classification acc	uracy for RBF models 124
	5.12.3 Comparison of mean sensitivity for RE	3F models 127
	5.12.4 Comparison of mean specificity for RE	3F models 130
	5.12.5 Comparison of number of kernels for H	RBF models 133
5.13	MATLAB graphical user interface for damage	e detection 135
5.14	Summary	137
CHAF	PTER 6 RESULTS DISCUSSION AND CO	NCLUSION
6.1	Introduction	138
6.2	Discussion	138
6.3	Thesis conclusion	143
6.4	Future work	144
REFE	ERENCES	145
APPE	ENDIX A – VIBRATION SIGNAL PLOTS	149
APPE	ENDIX B – FRAME ENERGY PLOTS	155
APPE	ENDIX C – DCT PLOTS	161
APPE	ENDIX D – DFT PLOTS	167
APPE	ENDIX E – MLP TRAINING RESULTS	173

APPENDIX F – RBF TRAINING RESULTS	1 91
APPENDIX G – STEEL PLATE SPECIFICATIONS	209
LIST OF PUBLICATIONS	210
LIST OF AWARDS	212

with the steen is protected by original convibution

LIST OF TABLES

NO.	PAG	GE
4.1	Frequency spectral bands for simply supported steel plate	74
4.2	Frequency spectral bands for fixed (hinged) free steel plate	75
4.3	Outlier removal – Simply supported	79
4.4	Outlier removal – Fixed Free	79
4.5	Dimensionality reduction for simply supported	83
4.6	Dimensionality reduction for fixed free	83
5.1	MLP training results for 60 percent data samples (simply supported)	93
5.2	MLP training results for 70 percent data samples (simply supported)	94
5.3	MLP training results for 80 percent data samples (simply supported)	95
5.4	MLP training results for 60 percent data samples (fixed free)	96
5.5	MLP training results for 70 percent data samples (fixed free)	97
5.6	MLP training results for 80 percent data samples (fixed free)	98
5.7	Comparison of MLP architecture (simply supported)	99
5.8	Comparison of MLP architecture (fixed free)	101
5.9	Mean classification accuracy for MLP models (simply supported)	102
5.10	Mean classification accuracy for MLP models (fixed free)	103
5.11	Comparison of mean sensitivity for MLP models (simply supported)	104
5.12	Comparison of mean sensitivity for MLP models (fixed free)	106
5.13	Comparison of mean specificity for MLP models (simply supported)	107
5.14	Comparison of mean specificity for MLP neural models (fixed free)	109
5.15	Comparison of mean number of epoches for MLP models (simply supported)	110
5.16	Comparison of mean number of epochs for MLP models (fixed free)	111

5.17	RBF training results for 60 percent data samples (simply supported)	117
5.18	RBF training results for 70 percent data samples (simply supported)	118
5.19	RBF training results for 80 percent data samples (simply supported)	119
5.20	RBF training results for 60 percent data samples (fixed free)	120
5.21	RBF training results for 70 percent data samples (fixed free)	121
5.22	RBF training results for 80 percent data samples (fixed free)	122
5.23	Comparison of RBF network architecture (simply supported)	123
5.24	Comparison of RBF network architecture (fixed free)	124
5.25	Comparison of mean classification accuracy for RBF network models (simply supported)	125
5.26	Comparison of mean classification accuracy for RBF network models (fixed free)	126
5.27	Comparison of mean sensitivity for RBF network models (simply supported)	128
5.28	Comparison of mean sensitivity for RBF network models (fixed free)	129
5.29	Comparison of mean specificity for RBF network models (simply supported)	130
5.30	Comparison of mean specificity for RBF network models (fixed free)	132
5.31	Comparison of mean kernels for RBF models (simply supported)	133
5.32	Comparison of mean kernels for RBF models (fixed free)	134
E.1	MLP mean classification accuracy for frame energy based feature (simply supported)	173
E.2	MLP mean classification accuracy tested with Falhman criteria for frame energy based features (simply supported)	174
E.3	MLP mean classification accuracy for frame energy based features (fixed free)	175
E.4	MLP mean classification accuracy tested with Falhman criteria for frame energy based features (fixed free)	175
E.5	MLP mean classification accuracy for DCT peak moment features (simply supported)	176

E.6	MLP mean classification accuracy tested with Falhman criteria for DCT peak moment features (simply supported)	177
E.7	MLP mean classification accuracy for DCT peak moment features (fixed free)	178
E.8	MLP mean classification accuracy tested with Falhman criteria for DCT peak moment features (fixed free)	178
E.9	MLP mean classification accuracy for change in DCT peak moment features (simply supported)	179
E.10	MLP mean classification accuracy tested with Falhman criteria for change in DCT peak moment features (simply supported)	180
E.11	MLP mean classification accuracy for change in DCT peak moment features (fixed free)	181
E.12	MLP mean classification accuracy tested with Falhman criteria for change in DCT peak moment features (fixed free)	181
E.13	MLP mean classification accuracy for DCT peak value derivative features (simply supported)	182
E.14	MLP mean classification accuracy tested with Falhman criteria for DCT peak value derivative features (simply supported)	183
E.15	MLP mean classification accuracy for DCT peak value derivative features (fixed free)	184
E.16	MLP mean classification accuracy tested with Falhman criteria for DCT peak value derivative features (simply supported)	184
E.17	MLP mean classification accuracy for DCT peak area features (simply supported)	185
E.18	MLP mean classification accuracy tested with Falhman criteria for DCT peak area features (simply supported)	186
E.19	MLP mean classification accuracy for DCT peak area features (fixed free)	187
E.20	MLP mean classification accuracy tested with Falhman criteria for DCT peak area features (fixed free)	187
E.21	MLP mean classification accuracy for DFT spectral band features (simply supported)	188

List of Tables

E.22	MLP mean classification accuracy tested with Falhman criteria for DFT spectral band features (simply supported)	189
E.23	MLP mean classification accuracy for DFT spectral band features (fixed free)	190
E.24	MLP mean classification accuracy tested with Falhman criteria for DFT spectral band features (fixed free)	190
F.1	RBFN mean classification accuracy for frame energy based features (simply supported)	191
F.2	RBFN mean classification accuracy tested with Falhman criteria for frame energy features (simply supported)	192
F.3	RBFN mean classification accuracy for frame energy based features (fixed free)	193
F.4	RBFN mean classification accuracy tested using Falhman testing for frame energy based features (fixed free)	193
F.5	RBFN mean classification accuracy for DCT peak moment features (simply supported)	194
F.6	RBFN mean classification accuracy tested with Falhman testing criteria for DCT peak moment features (simply supported)	195
F.7	RBFN mean classification accuracy for DCT peak moment features (fixed free)	196
F.8	RBFN mean classification accuracy tested with Falhman testing criteria for DCT peak moment features (fixed free)	196
F.9	RBFN mean classification accuracy for change in DCT peak moment features (simply supported)	197
F.10	RBFN mean classification accuracy tested with Falhman testing criteria for change in DCT peak moment features (simply supported)	198
F.11	RBFN mean classification accuracy for change in DCT peak moment features (fixed free)	199
F.12	RBFN mean classification accuracy tested with Falhman testing criteria for change in DCT peak moment features (fixed free)	199
F.13	RBFN mean classification accuracy for DCT peak value derivative features (simply supported)	200
F.14	RBFN mean classification accuracy tested with Falhman testing criteria for DCT peak value derivative features (simply supported)	201

F.15	RBFN mean classification accuracy for DCT peak value derivative features (fixed free)	202
F.16	RBFN mean classification accuracy tested with Falhman testing criteria for DCT peak value derivative features (fixed free)	202
F.17	RBFN mean classification accuracy for DCT peak area features (simply supported)	203
F.18	RBFN mean classification accuracy tested with Falhman criteria for DCT peak area features (simply supported)	204
F.19	RBFN mean classification accuracy for DCT peak area features (fixed free)	205
F.20	RBFN mean classification tested with Falhman testing criteria for DCT peak area features (fixed free)	205
F.21	RBFN mean classification accuracy for DFT spectral band features (simply supported)	206
F.22	RBFN mean classification accuracy tested with Falhman testing criteria for DFT spectral band features (simply supported)	207
F.23	RBFN mean classification accuracy for DFT spectral band features (fixed free)	208
F.24	RBFN mean classification accuracy tested with Falhman testing criteria for DFT spectral band features (fixed free)	208
	this ite.	

LIST OF FIGURES

NO.		PAGE
2.1	Classification of damage detection methods	10
3.1	2B Stainless steel plate	21
3.2	Steel plate with cell grids	21
3.3	Steel plate with labeled excitation locations	21
3.4	Simply supported steel plate	23
3.5	Fixed (Hinged) free steel plate	23
3.6	Impulse hammer (Dytran 5800B2)	25
3.7	Piezo-tronic voltage source monoaxial accelerometer	25
3.8	Data acquisition module (LMS SCADAS Mobile)	25
3.9	Roving hammer test	27
3.10	Roving accelerometer test	28
3.11	Detailed flowchart of the system model	29
3.12	Steel plate without damages	32
3.13	Steel plate with damages	32
3.14	Steel plate undamaged location 14 (Magnified view at X50)	33
3.15	Steel plate undamaged location 32 (Magnified view at X50)	33
3.16	A cell with minimum damage (Magnified view at X50)	34
3.17	A cell with minimum damage and compared with the size of a pin (Magnified view at X30)	34
3.18	A cell with medium damage (Magnified view at X50)	35
3.19	A cell with medium damage and compared with the size of pin (Magnified view at X30)	35
3.20	A cell with maximum damage (Magnified view at X50)	36
3.21	A cell with maximum damage compared with the head of a pin (Magnified view at X30)	36

List of Figures

3.22	Accelerometer placement and impact point (Protocol 1)	37
3.23	Accelerometer placement and impact point (Protocol 2)	37
3.24	Accelerometer placement and impact point (Protocol 3)	38
3.25	Accelerometer placement and impact point (Protocol 4)	38
3.26	Typical vibration signal under normal condition	41
3.27	Typical vibration signal under damaged condition	41
4.1	Block diagram of feature extraction methods	46
4.2	A typical vibration signal blocked into frames	46
4.3	Flowchart describing the trimming procedure	48
4.4	A typical plot of the frame energy in both normal and damaged condition	50
4.5	Flowchart for frame blocking and frame energy computation process	50
4.6	Flowchart for frame energy based feature extraction	55
4.7	Algorithm to compute DCT peak magnitudes and corresponding frequency indices	57
4.8	A typical representation of DCT peak magnitudes and frequency indices	59
4.9	Flowchart for DCT peak moment feature extraction	61
4.10	A typical depiction of change in DCT peak moments	63
4.11	Flowchart to compute Change in DCT peak moment feature extraction	65
4.12	A typical representation of rate of change in DCT peak moments	66
4.13	Flowchart to compute the DCT peak value derivative features	68
4.14	DCT peak area coefficients	70
4.15	Flowchart to compute DCT peak area features	72
4.16	Typical frequency spectrum of the vibration signal in normal and damaged condition	73
4.17	Flowchart for DFT spectral band feature extraction	77
5.1	Architecture of a multilayer feedforward neural network	88

5.2	Architecture of radial basis function network	113
5.3	A typical representation of graphical user interface for damage detection (healthy location)	136
5.4	A typical representation of graphical user interface for damage detection (faulty location)	136
A.1	Vibration signal at location 14 under normal condition (Simply supported steel plate)	149
A.2	Vibration signal at location 14 under minimum damaged condition (Simply supported steel plate)	149
A.3	Vibration signal at location 32 under normal condition (Simply supported steel plate)	150
A.4	Vibration signal at location 32 under medium damaged condition (Simply supported steel plate)	150
A.5	Vibration signal at location 21 under normal condition (Simply supported steel plate)	151
A.6	Vibration signal at location 21 under maximum damaged condition (Simply supported steel plate)	151
A.7	Vibration signal at location 14 under normal condition (Fixed free steel plate)	152
A.8	Vibration signal at location 14 under minimum damaged condition (Fixed free steel plate)	152
A.9	Vibration signal at location 32 under normal condition (Fixed free steel plate)	153
A.10	Vibration signal at location 32 under medium damaged condition (Fixed free steel plate)	153
A.11	Vibration signal at location 21 under normal condition (Simply supported steel plate)	154
A.12	Vibration signal at location 21 under maximum damaged condition (Simply supported steel plate)	154
B.1	Frame energy at location 21 for channel 1 with minimum damage (Simply supported steel plate)	155
B.2	Frame energy at location 21 for channel 2 with minimum damage (Simply supported steel plate)	155

B.3	Frame energy at location 21 for channel 3 with minimum damage (Simply supported steel plate)	155
B.4	Frame energy at location 32 for channel 1 with medium damage (Simply supported steel plate)	156
B.5	Frame energy at location 32 for channel 2 with medium damage (Simply supported steel plate)	156
B.6	Frame energy at location 32 for channel 3 with medium damage (Simply supported steel plate)	156
B.7	Frame energy at location 14 for channel 1 with maximum damage (Simply supported steel plate)	157
B.8	Frame energy at location 14 for channel 2 with maximum damage (Simply supported steel plate)	157
B.9	Frame energy at location 14 for channel 3 with maximum damage (Simply supported steel plate)	157
B.10	Frame energy at location 21 for channel 1 with minimum damage (Fixed free steel plate)	158
B.11	Frame energy at location 21 for channel 2 with minimum damage (Fixed free steel plate)	158
B.12	Frame energy at location 21 for channel 3 with minimum damage (Fixed free steel plate)	158
B.13	Frame energy at location 32 for channel 1 with medium damage (Fixed free steel plate)	159
B.14	Frame energy at location 32 for channel 2 with medium damage (Fixed free steel plate)	159
B.15	Frame energy at location 32 for channel 3 with medium damage (Fixed free steel plate)	159
B.16	Frame energy at location 14 for channel 1 with maximum damage (Fixed free steel plate)	160
B.17	Frame energy at location 14 for channel 2 with maximum damage (Fixed free steel plate)	160
B.18	Frame energy at location 14 for channel 3 with maximum damage (Fixed free steel plate)	160
C.1	DCT peak values at location 21 for channel 1 with minimum damage (Simply supported steel plate)	161

C.2	DCT peak values at location 21 for channel 2 with minimum damage (Simply supported steel plate)	161
C.3	DCT peak values at location 21 for channel 3 with minimum damage (Simply supported steel plate)	161
C.4	DCT peak values at location 32 for channel 1 with medium damage (Simply supported steel plate)	162
C.5	DCT peak values at location 32 for channel 2 with medium damage (Simply supported steel plate)	162
C.6	DCT peak values at location 32 for channel 3 with medium damage (Simply supported steel plate)	162
C.7	DCT peak values at location 14 for channel 1 with maximum damage (Simply supported steel plate)	163
C.8	DCT peak values at location 14 for channel 2 with maximum damage (Simply supported steel plate)	163
C.9	DCT peak values at location 14 for channel 3 with maximum damage (Simply supported steel plate)	163
C.10	DCT peak values at location 21 for channel 1 with minimum damage (Fixed free steel plate)	164
C.11	DCT peak values at location 21 for channel 2 with minimum damage (Fixed free steel plate)	164
C.12	DCT peak values at location 21 for channel 3 with minimum damage (Fixed free steel plate)	164
C.13	DCT peak values at location 32 for channel 1 with medium damage (Fixed free steel plate)	165
C.14	DCT peak values at location 32 for channel 2 with medium damage (Fixed free steel plate)	165
C.15	DCT peak values at location 32 for channel 3 with medium damage (Fixed free steel plate)	165
C.16	DCT peak values at location 14 for channel 1 with maximum damage (Fixed free steel plate)	166
C.17	DCT peak values at location 14 for channel 2 with maximum damage ((Fixed free steel plate)	166
C.18	DCT peak values at location 14 for channel 3 with maximum damage (Fixed free steel plate)	166

D.1	Frequency spectrum at location 21 for channel 1 with minimum damage (Simply supported steel plate)	167
D.2	Frequency spectrum at location 21 for channel 2 with minimum damage (Simply supported steel plate)	167
D.3	Frequency spectrum at location 21 for channel 3 with minimum damage (Simply supported steel plate)	167
D.4	Frequency spectrum at location 32 for channel 1 with medium damage (Simply supported steel plate)	168
D.5	Frequency spectrum at location 32 for channel 2 with medium damage (Simply supported steel plate)	168
D.6	Frequency spectrum at location 32 for channel 3 with medium damage (Simply supported steel plate)	168
D.7	Frequency spectrum at location 14 for channel 1 with maximum damage (Simply supported steel plate)	169
D.8	Frequency spectrum at location 14 for channel 2 with maximum damage (Simply supported steel plate)	169
D.9	Frequency spectrum at location 14 for channel 3 with maximum damage (Simply supported steel plate)	169
D.10	Frequency spectrum at location 21 for channel 1 with minimum damage (Fixed free steel plate)	170
D.11	Frequency spectrum at location 21 for channel 2 with minimum damage (Fixed free steel plate)	170
D.12	Frequency spectrum at location 21 for channel 3 with minimum damage (Fixed free steel plate)	170
D.13	Frequency spectrum at location 32 for channel 1 with medium damage (Fixed free steel plate)	171
D.14	Frequency spectrum at location 32 for channel 2 with medium damage (Fixed free steel plate)	171
D.15	Frequency spectrum at location 32 for channel 3 with medium damage (Fixed free steel plate)	171
D.16	Frequency spectrum at location 14 for channel 1 with maximum damage (Fixed free steel plate)	172
D.17	Frequency spectrum at location 14 for channel 2 with maximum damage (Fixed free steel plate)	172

D.18	Frequency spectrum at location 14 for channel 3 with maximum damage (Fixed free steel plate)	172
E.1	MLP Mean squared error versus epoch graph for frame energy based feature classification (simply supported)	173
E.2	MLP Mean squared error versus epoch graph for frame energy based feature classification (fixed free)	174
E.3	MLP Mean squared error versus epoch graph for DCT peak moment feature classification (simply supported)	176
E.4	MLP Mean squared error versus epoch graph for DCT peak moment feature classification (fixed free)	177
E.5	MLP Mean squared error versus epoch graph for change in DCT peak moment feature classification (simply supported)	179
E.6	MLP Mean squared error versus epoch graph for change in DCT peak moment feature classification (fixed free)	180
E.7	MLP Mean squared error versus epoch graph for DCT peak value derivative feature classification (simply supported)	182
E.8	MLP Mean squared error versus epoch graph for DCT peak value derivative feature classification (fixed free)	183
E.9	MLP Mean squared error versus epoch graph for DCT peak area feature classification (simply supported)	185
E.10	MLP Mean squared error versus epoch graph for DCT peak area feature classification (fixed free)	186
E.11	MLP Mean squared error versus epoch graph for DFT spectral band feature classification (simply supported)	188
E.12	MLP Mean squared error versus epoch graph for DFT spectral band feature classification (fixed free)	189
F.1	RBFN performance characteristic graph for frame energy based feature classification (simply supported)	191
F.2	RBFN performance characteristic graph for frame energy based feature classification (fixed free)	192
F.3	RBFN performance characteristic graph for DCT peak moment feature classification (simply supported)	194
F.4	RBFN performance characteristic graph for DCT peak moment feature classification (fixed free)	195

F.5	RBFN performance characteristic graph for change in DCT peak moment feature classification (simply supported)	197
F.6	RBFN performance characteristic graph for change in DCT peak moment feature classification (fixed free)	198
F.7	RBFN performance characteristic graph for DCT peak value derivative feature classification (simply supported)	200
F.8	RBFN performance characteristic graph for DCT peak value derivative feature classification (fixed free)	201
F.9	RBFN performance characteristic graph for DCT peak area feature classification (simply supported)	203
F.10	RBFN performance characteristic graph for DCT peak area feature classification (fixed free)	204
F.11	RBFN performance characteristic graph for DFT spectral band feature classification (simply supported)	205
F.12	RBFN performance characteristic graph for DFT spectral band feature classification (fixed free)	206