EFFECT OF ROTOR BAR SIZE ON THREE PHASE INDUCTION MOTOR PERFORMANCE

PUNGUT BINIBRAHIM PUNGUT BINIBRAHIM OTHIS Hernis protected by

UNIVERSITI MALAYSIA PERLIS 2012

EFFECT OF ROTOR BAR SIZE ON THREE PHASE INDUCTION MOTOR PERFORMANCE

PUNGUT BIN IBRAHIM (0930910421)

A thesis submitted In fulfillment of the requirement for the degree of Master of Science (Electrical Systems Engineering)

School of Electrical Systems Engineering UNIVERSITI MALAYSIA PERLIS

2012

UNIVERSITI MALAYSIA PERLIS

	Ι	DECLARATION OF THESIS			
Author's full name	:	PUNGUT BIN IBRAHIM			
Date of birth	:	20 JULY 1964			
Title	:	Effect of Rotor Bar Size on Three Phase Induction Motor			
		Performances			
Academic Session	:	2009-2011			
I hereby declare that	the thes	is becomes the property of Universiti Malaysia Perlis (UniMAP)			
and to be placed at th	ne librar	y of UniMAP. This thesis is classified as:			
CONFIDENT	ΓIAL	{Contains confidential information under the Official Secret			
		Act 1972)			
		×eo			
RESTICTED		¿Contains restricted information as specified by the			
	organization where research was done}				
· · ·					
OPEN ACCE	ESS	I agree that my thesis is to be made immediately available as			
		hard copy or on-line open access (full text)			
1/1/1S					
I, the author, give pe	rmissio	n to the UniMAP to reproduce this thesis in whole or in part for			
the purpose of resear	rch or a	cademic exchange only (except during a period of years, if			
so requested above).					
		Certified by:			
SIGNATURE		SIGNATURE OF SUPERVISOR			
Pungut Bin Ibra	him	Prof. Dr. Ismail Bin Daut			
IC. NO: 64072	01-12-5	131			
Date:		Date:			

ACKNOWLEDGEMENT

Alhamdulillah, thanks to Allah because of His grace, I am finally able to complete this research successfully. I would like to express my appreciation to those who have supervised and assist me in completing my master.

Firstly, I would like to express my appreciation and gratitude to my supervisor Professor Dr. Ismail Daut, who was never tired of giving me encouragement and supervision throughout the research and preparation of my thesis report. Motivation, advice, guidance and discussion has enabled me to accomplish study of the effects of the different size of bar diameter rotor induction motor. Thanks also to Mr. Gomesh Nair A / L Shasidharan who gave much help to me I would also like to express my appreciation to all staff, especially the personnel of the Electrical Energy and Industrial Electronic Systems Cluster consisting of Technicians, Masters and PhD fellow reseachers, En. Shaharizam Shafeei of Engineering Centre in demonstration and guidance in using of the wire cutting machine, all employees of the School of Electrical Engineering especially the Dean Dr. Ahmad Fareq Abdul Malek, Post Graduate Centre and all staff of Universiti Malaysia Perlis in general.

I would like to express my appreciation to my friends in Induction Motor research group consisting of Mr. Gomesh Nair, Yanawati, Nor Shafiqin, Syatirah, Mastika, and Mohd Asri for their help, cooperation and the willingness to have discussions at anytime available.

Finally, thanks to my family, especially my wife who sacrificed much of her time and in taking care of our children in order for me to complete this project. Similarly to my sisters and my children who gave me inspiration and strength to face the challenges on this project. I would also like to apologize to anyone I forgot to mention here.

TABLE OF CONTENTS

Page

APP	ROVAL AND DECLARATION SHEET	ii
ACK	KNOWLEDGMENT	iii
TAB	BLE OF CONTENTS	iv
LIST	Γ OF TABLES	viii
LIST	r of figures	X
LIST	T OF ABBREVIATIONS	XV
ABS	TRAK	xvi
ABS	T OF FIGURES T OF ABBREVIATIONS TRAK TRACT Aims and Objectives technologic identities the state of the state	xvii
CHA	APTER 1 INTRODUCTION	
1.1	Introduction	1
1.2	Aims and Objectives	2
1.3	Scope of Project	3
1.4	Problem Statement	4
1.5	Project Overview	5
1.6 (Thesis Synopsis	6
CHA	APTER 2 LITERATURE REVIEW	
2.1	Rotating Machine	8
2.2	Induction Motor	9
	2.2.1 Induction Motor Principles	10
	2.2.2 Slip	11

2.2.3 Torque 11

	2.2.4	Horsepower	13
	2.2.5	Equivalent Circuit	14
2.3	Induct	tion Motor Fabrication	15
	2.3.1	Rotor Design	17
	2.3.2	Stator Design	21
2.4	Motor	Losses	24
	2.4.1	Core Loss Stator Copper Loss Rotor Copper Loss Friction and Windage Losses Stray Loss	25
	2.4.2	Stator Copper Loss	25
	2.4.3	Rotor Copper Loss	26
	2.4.4	Friction and Windage Losses	26
	2.4.5	Stray Loss	27
2.5	Impro	ve of the stator and rotor core material	27
2.6	Impro	ve on the rotor bar material	30
2.7	Efficie	ency of an Induction Motor	30
2.8	Motor	Efficiency in Terms of Economical Considerations	31
2.9	Revie	w of Other Researcher	33
C	Śμ,		

CHAPTER 3 RESEARCH METHODOLOGY

3.0	Introd	luction	40
3.1	Finite	Element Method (FEM) Software	40
	3.1.1	Induction Motor Model	41
	3.1.2	Induction Motor Design Steps Using FEM Software	42
		3.1.2.1 General Specifications	43
		3.1.2.2 Rotor's Specifications	45
		3.1.2.3 Stator's Specifications	46

		3.1.2.4 Coil Winding's Specifications		48
	3.1.3	Design Results		48
		3.1.3.1 Performance Tables		49
		3.1.3.2 Performance Charts		51
		3.1.3.3 Analysis Chart		55
		3.1.3.4 Fields	58	
3.2	Hardw	vare Rotor Model of Induction Motor and Motor Tests		60
	3.2.1	Hardware Rotor Model		61
		Hardware Rotor Model 3.2.1.1 Design Drawing		61
		3.2.1.2 Laminations Blocks Preparation		62
		3.2.1.3 EDM Wire Cutting		63
		3.2.1.4 Core Welding, Copper Bars Insertion, End Ring and	d	
		Rotor Shaft		65
	3.2.2	Experimental of Induction Motor		68
		3.2.2.1 No-Load Test		68
		3.2.2.2 Separating Friction and Windage Loss		72
		3.2.2.3 DC Test		73
C		3.2.2.4 Short Circuit or Blocked-Rotor Test		75
<u> </u>	1			

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Comp	arison of Motorsolve (IM) Model for between three different size	
	of rote	or bars, 6.0 mm, 8.0 mm and 10.0 mm	79
	4.1.1	Nameplate	79
	4.1.2	Equivalent circuit	82
	4.1.3	Torque	83
	4.1.4	Input and Output Power	86

	4.1.5	Motor Losses	90
	4.1.6	Efficiency	94
	4.1.7	Instantaneous fields (Electromagnetic field)	96
4.2	Labora	atory Experiments	99
	4.2.1	No Load Test Analysis	99
	4.2.2	Friction and Windage Losses	100
	4.2.3	DC Test Analysis	104
	4.2.4	Block-Rotor Test / Locked-Rotor Test Analysis	105
	4.2.5	Losses Analysis on 8.0 mm and 10.0 mm diameter rotor bars	106
	4.2.6	Efficiency Estimation Based on Experimental	110
4.3	Econo	omical Aspects	111
4.4	Overa	ll Performance of Induction Motor with Different Size of Rotor Bar	114
СНА	PTER 5	5 CONCLUSION AND FUTURE RECOMMENDATION	
5.1	Concl	usion 5	115
	5.1.1	Based on FEM simulation software Motorsolve ver. 2.3	115
	5.1.2	Based on the overall laboratory experiments	116
5.2	Future	Recommendation	117
REF	ERENC	ES	119
APP	ENDIX	A: PUBLICATIONS (JOURNALS & PAPERS) & AWARDS	126
APP	ENDIX	B: PARAMETER CALCULATION	131
APP	ENDIX	C: EDM WIRE CUT	134

LIST OF TABLES

Tables No.		Page
3.1	Parameters changes in the rotor design	46
3.2	Parameters changes in the stator design	47
4.1	Torque data for induction motor with 6 mm, 8 mm and 10 mm	
	of rotor bar using software simulation	86
4.2	Input Power for induction motor with 6 mm, 8 mm and 10 mm	
	of rotor bar	87
4.3	Output Power for induction motor with 6 mm, 8 mm and 10 mm	
	of rotor bar	89
4.4	Efficiency data for three different sizes of rotor bar	96
4.5	No-Load Test Data for Induction Motor with mm	
	diameter rotor bar	99
4.6	No-Load Test Data for Induction Motor with 8 mm	
	diameter rotor bar	99
4.7	No-Load Test Data for Induction Motor with 10 mm	
, his	diameter rotor bar	100
4.8	DC Test result	104
4.9	No load Losses for 6 mm, 8 mm and 10 mm Diameter	
	Sizes of rotor bars	105
4.10	Blocked Rotor Test Results for 6 mm, 8 mm and 10 mm	
	Diameter Sizes of rotor bars	106
4.11	Rotor Loss for 6 mm, 8 mm and 10 mm Diameter Sizes	
	of rotor bars	106

4.12	Loss Comparison for Induction Motor with 6 mm, 8 mm and	
	10 mm sizes of rotor bar	107
4.13	Power and Efficiency for induction motors with 6 mm, 8 mm	
	and 10 mm diameter sizes of rotor bars	111
4.14	Cost of copper rotor bar for 6 mm, 8 mm and 10 mm diameter	112
4.15	Comparison of Energy and Cost saving by induction motors with 6 mm, 8 mm and 10 mm rotor bar diameter	113
othic	with 6 mm, 8 mm and 10 mm rotor bar diameter	

LIST OF FIGURES

Figu	ires No.	Page
1.1	Flow Chart of Project Overview	5
2.1	Torque characteristics for several value of rotor resistance.	13
2.2	Equivalent circuit of an induction motor	14
2.3	Induction motor construction	15
2.4	Induction motor construction Evenly distributed stator slots Squirrel cage rotor wnding Type A, B, C and D of rotor bar	16
2.5	Squirrel cage rotor wnding	16
2.6	Type A, B, C and D of rotor bar	17
2.7	Torque characteristics of four types of the rotor designs.	19
2.8	Various type of rotor bar	20
2.9	Different shapes of stator slots for cogging torque reduction	22
2.10	Various types of stator slots	23
2.11	Power Losses in an induction motor	24
2.12	Sales of Electricity (GWh) by TNB in 2006	32
2.13	Percentage consumption of Electrical Energy in Malaysia Factories.	33
3.1	Induction Motor Basic Specifications	42
3.2	Design Steps of Induction Motor Modeling	43
3.3	Induction Motor General Specifications	44
3.4	The Rotor characteristics for Induction Motor	45
3.5	Stator's Specification	47
3.6	Winding's Specification	48
3.7	Performance Tables for Nameplate and Equivalent results	50

3.8	Nameplate result	50
3.9	Equivalent Circuit Result	51
3.10	Performance Charts Result selection.	52
3.11	Summary Performance Charts	52
3.12	Torque Charts	53
3.13	Efficiency Charts	53
3.14	Voltage Charts	54
3.15	Current Charts	54
3.16	Summary Performance Charts	55
3.17	Voltage Charts Current Charts Summary Performance Charts Selection of Analysis Charts	55
3.18	Selection of characteristic to be analyzed	56
3.19	Torque curves for 6 different percentage of rated speed	56
3.20	Curves for Total loss, Winding loss, Rotor Cage loss and Iron loss	57
3.21	Selections of X axis Rotor Speed, design Index and Synchronous	
	Speed	58
3.22	Fields and input selection for Contour plot and Shaded plot	58
3.23	Flux in phase (contour plot) and Flux density (Shaded plot)	59
3.24	Lamination eddy current loss (contour plot) and Hysteresis	
	loss (Shaded plot)	60
3.25	Rotor drawing for steel sheet cutting	62
3.26	Laminations block preparation process.	63
3.27	EDM Wire Cut Machine	64
3.28	Steel laminations after completion of cutting process	65
3.29	Welded rotor core	66
3.30	Rotor Bars inserted in the rotor slots	67

3.31	Completed rotor with shaft and bearings	67
3.32	No-Load Test of Induction Motor	69
3.33	Equivalent Circuit at No-Load for Induction Motor	69
3.34	Induction Motor Equivalent Circuit at No Load Condition	70
3.35	Experiment Set Up for No Load test	71
3.36	Separating Friction and Windage Loss Graph	72
3.37	Separating Friction and Windage Loss Graph with straight	
	line of U ² vs. Kw	73
3.38	Separating Friction and Windage Loss Graph with straight line of U ² vs. Kw DC Test of Induction Motor DC Test Setup Circuit of Block rotor test	74
3.39	DC Test Setup	75
3.40	Circuit of Block rotor test	76
3.41	Equivalent Circuit of Block rotor condition with $s = 1$	77
3.42	Final Equivalent Circuit for Blocked rotor condition	77
3.43	Laboratory Set up for Blocked Rotor test	78
4.1	Nameplate Result for 6 mm rotor bar	80
4.2	Nameplate Result for 8 mm rotor bar	80
4.3	Nameplate Result for 10 mm rotor bar	81
4.4 🤇	Equivalent circuit for 6 mm rotor bar	82
4.5	Equivalent circuit for 8 mm rotor bar	82
4.6	Equivalent circuit for 10 mm rotor bar	83
4.7	Torque characteristics of induction motor with 6 mm, 8 mm and	
	10 mm of rotor bar using software simulation	85
4.8	Input Power for induction motor with 6 mm, 8 mm and	
	10 mm of rotor bar using software simulation	88

4.9	Output Power curves for induction motor with 6 mm, 8 mm and	
	10 mm of rotor bar using software simulation	90
4.10	Winding Losses of induction motor with 6 mm, 8 mm and	
	10 mm of rotor bar using software simulation.	91
4.11	Rotor Cage Losses of induction motor with 6 mm, 8 mm and	
	10 mm of rotor bar using software simulation	92
4.12	Iron Losses of induction motor with 6 mm, 8 mm and 10 mm	
	of rotor bar using software simulation	93
4.13	Total Losses of induction motor with 6 mm, 8 mm and 10 mm	
	of rotor bar using software simulation	94
4.14	Efficiency curves for induction motor with 6 mm, 8 mm and	
	10 mm of rotor bar using software simulation	95
4.15	Magnitude of Flux Density for 10 mm rotor bar	97
4.16	Magnitude of Flux Density for 8 mm rotor bar	97
4.17	Magnitude of Flux Density for 6 mm rotor bar	98
4.18	Friction and Windage Losses for 6.0 mm rotor bar	101
4.19	Friction and Windage Losses for 8.0 mm rotor bar	101
4.20 Friction and Windage Losses for 10.0 mm rotor bar 102		
4.21	Power vs Voltage ² Graph for the induction motor with	
	6.0 mm rotor bar	103
4.22	Power vs Voltage ² Graph for the induction motor with	
	8.0 mm rotor bar	103
4.23	Power vs Voltage ² Graph for the induction motor with	
	10.0 mm rotor bar	104

4.24	Graph of Segregated Losses for three rotor bar sizes, 6 mm, 8 mm		
	and 10 mm in diameter	108	
4.25	Losses segregation of 6 mm diameter of rotor bar	109	
4.26	Losses segregation of 8 mm diameter of rotor bar	109	
4.27	Losses segregation of 10 mm diameter of rotor bar	110	

othis item is protected by original copyright

LIST OF ABBREVIATIONS

AC	Alternating Current
ASD	Adjustable Speed Drive
AES	Annual Energy Saving
В	Magnetic Flux Density
DC	Direct Current
EDM	Electrical Discharge Machining
FEM	Finite Element Method
Н	Direct Current Electrical Discharge Machining Finite Element Method Magnetic Field Intensity Horse Power
HP	Horse Power
IEC	International Electrotechnical Commission
IEEE	Institute Electric and Electronic Engineering
IM	Induction Motor
LF	Load Factor
NEMA	National Electrical Manufacturers Association
F&W	Friction and Windage
RCL	Rotor Copper Loss
RPM	Revolutions Per Minute
SCL	Stator Copper Loss
SESCO	Sarawak Electricity Supply Corporation
SESB	Sabah Electricity Supply Sendirian Berhad
SEU	Energy Consumed per unit physical product
TNB	Tenaga Nasional Berhad
TCS	Total Cost Saving

Kesan Saiz Bar Pemutar Terhadap Prestasi Motor Aruhan Tiga Fasa

ABSTRAK

Penyelidikan ini adalah tentang kesan saiz bar pemutar terhadap prestasi motor induksi tiga fasa. Penyelidikan telah dijalankan dalam dua bentuk, iaitu dengan menggunakan perisian FEM dan eksperimen makmal yang dijalankan pada tiga fabrikasi model perkakasan pemutar. Kajian menggunakan FEM perisian melibatkan tiga (3) saiz iaitu 6 mm, 8 mm dan 10 mm, ukuran diameter bar pemutar. Perisian FEM, Motorsolve, adalah perisian mesra pengguna yang membenarkan simulasi dilaksanakan dengan cepat dan tepat. Perbandingan hasil keputusan dari simulasi perisian kemudian dibandingkan dari segi maklumat plat nama seperti arus, kuasa keluaran dan faktor kuasa, parameter-parameter litar setara, tork, kecekapan, kuasa masukan, kuasa keluaran, kerugian dan ketumpatan fluks magnet. Bahagian kedua ialah pembinaan tiga rotor motor induksi dengan saiz bar pemutar 6 mm, 8 mm dan 10 mm. Pembinaan bermula dengan penyediaan blok kepingan keluli bukan ira dan kemudian diikuti dengan proses memotong menggunakan mesin pemotong wayar EDM, kepingan yang telah dipotong kemudian dikimpal dan diikuti dengan memasukkan bar pemutar tembaga, dan akhir sekali adalah pemasangan kedua-dua gelang hujung dan aci pemutar. Peringkat seterusnya adalah menjalankan eksperimen makmal seperti ujian tanpa beban, ujian pemutar disekat, dan kaedah ujian rintangan arus terus (AT) pada tiga model rotor yang direka. Maklumat voltan, arus dan kuasa yang didapati membolehkan pengiraan matematik dilakukan untuk menentukan kecekapan motor aruhan, kerugian dan faktor kuasa, θ . Keputusan dari kedua-dua siasatan menunjukkan bahawa kenaikan diameter bar pemutar akan meningkatkan arus, kuasa keluaran, faktor kuasa, kerugian dan tork pada kelajuan terkadar tetapi mengurangkan tork permulaan. Dari segi kecekapan motor aruhan, keputusan menunjukkan bahawa saiz bar pemutar yang berbeza memberikan kecekapan yang berbeza. Perubahan dari 6 mm hingga 8 mm diameter bar pemutar meningkat kecekapan tetapi perubahan dari 8 mm hingga 10 mm diameter bar pemutar akan mengurangkan kecekapan motor aruhan. Ini adalah kerana kenaikan saiz bar pemutar daripada 6 mm hingga 8 mm telah menurunkan peratusan kerugian berbanding kuasa masukan manakala kenaikan selanjutnya daripada 8 mm hingga 10 mm saiz bar pemutar meningkatkan peratusan kerugian berbanding kuasa masukan.

Effect of Rotor Bars Size on Three Phase Induction Motor Performance

ABSTRACT

This investigation is to determine the effect of rotor bar size to performance of three phase induction motor. The research was conducted in two forms, namely by using the FEM software and laboratory experiments that conducted on three fabricated rotor hardware models. The study using FEM software involves three (3) sizes, 6 mm, 8 mm and 10 mm, of rotor bar diameter. A user-friendly FEM software named Motorsolve, allowed simulation to be performed quickly and accurately. Comparison of the results from the software simulation then compared in terms of information on the name plate such as current, output power and power factor, equivalent circuit parameters, torque, efficiency, power input, power output, losses and magnetic flux density. The second part is the construction of three induction motor rotors with rotor bar size 6 mm, 8 mm and 10 mm. Construction starts with preparation of block of non-grain steel laminations and then followed by cutting process using EDM wire cutting machine, the cut laminations then welded and followed by insertion of copper rotor bars, and finally is installation of both end rings and rotor's shaft. The next stage is to carry out laboratory experiments such as no-load test, blocked rotor test, and direct current (DC) resistance test methods on the three rotor models that were fabricated. The information of voltage, current and power gathered allows mathematical calculation to determine the induction motor efficiency, losses and power factor, θ . Results from both investigations shows that the increment in rotor bar diameter will increase the current, power output, power factor, losses and torque at rated speed but decrease the starting torque. Results show that different sizes of rotor bar given different efficiency. Changes from 6 mm to 8 mm of rotor bar diameter increased the efficiency but changes from 8 mm to 10 mm of rotor bar diameter will decreased an induction motor efficiency. This is because increment the rotor bar size from 6 mm to 8 mm had decreased the percentage of losses to power input while further increment from 8 mm to 10 mm rotor bar size increased the percentage of losses to power input.

CHAPTER 1

INTRODUCTION

1.1 Introduction

The AC induction motor is used more than any other means to power industrial equipment. It became an important class of electric machines which apply in so many industry and usage. Motors are taking the biggest portion of electricity consumption in most industries where more than 85% of them are induction motors (Theodore W., 2006). What makes this type of motor very popular because they require less maintenance and its smaller size compared to the horse power produced. The three phase induction motor has no switching or commutation of circuits that make it possible to be used at very high voltage. The other advantage of induction motor is cost of production is low and simple. Additionally, induction motors are highly reliable and relatively have high efficiency. Moreover, the wide range powers induction motors, which is from hundreds of watts to megawatts, satisfies the production needs of most industrial processes. This is due to the use of motors of this type not only for ordinary use but also to the extreme and dangerous. In general, the use of induction motors, including pumps, conveyors, machine tools, centrifugal machines, presses, Elevators, Grain Elevators packaging equipment, Shredders, and equipment for coal plants (Aderiano M., 2006).

According to study by U.S. Department of Energy, as for 1991, the number of electric motors in the 1 - 120 hp range was more than 125 million, and they consumed 53-58% of the total electric energy generated. This huge consumption of generated

power became the reason that we could save electricity by increase the efficiency of motors. In many years, motor design was toward smaller and lighter body in order to lower the production cost but this approach is gradually change by giving more intention to efficiency and power factor

Malaysia is heading towards the developed countries are also experiencing rapid growth in the industry. The use of induction motors is increasing from year to year which would certainly increase the use of power generated at power plants. Thus, small energy saving by individual induction motor will help in reducing the amount of energy consumed as a whole which can be directed for the use of other.

Although studies have been carried out to produce a more efficient induction motors, but the focus is more on the material and rotor bar shape itself. There were no significant studies on the size of the rotor bars which can also affect the overall efficiency of an induction motor. A marginal increase in efficiency will have a major impact on overall energy consumption based on huge numbers of current induction motors in use.

1.2 (Aims and Objectives

The aim of the thesis is to investigate the effect of different rotor bar size towards the 0.5hp induction motor performances. The objective of this research can be summarized as follows:

 Design and simulation of three phase based on 0.5hp AC induction motor using Finite Element Method software, Motorsolve version 2.3 for three different sizes of rotor bars.

- ii. To construct three induction motor rotors with different sizes of rotor bar diameter, 6 mm, 8 mm and 10 mm.
- iii. To compare induction motor performance and characteristics by using FEM software analysis and laboratory experiments between three different size of rotor bars, 6 mm, 8 mm and 10 mm diameter sizes.
- To investigate the effect of 6mm, 8 mm and 10 mm rotor bar diameter sizes on iv. induction motor efficiency and total losses such as stator copper loss, rotor loss, core loss, friction & windage losses and stray load loss einal color

1.3 **Scope of Project**

The scope of this study includes a relatively large area. Each stage of this scope is very important in order to produce a complete research.

The first stage is to create motor models with three different sizes of rotor bar using FEM software. The FEM software that used in this research is Motorsolve Ver. 2.3. The model of the designed motor is based on a 0.5 HP induction motor. The software simulations will conduct all calculations related to the power losses, efficiency, torque, magnetic flux density, speed of the motor. It will show how changes in the rotor bar size will affect the overall efficiency of an induction motor.

The next stage is to build three rotors with three different sizes of rotor bar. Each rotor will be studied using the same stator where the comparison will be made in several experiments. In the experiments, all tests related to the efficiency of the motor will be carried out, including no load test, the DC resistance and blocked rotor test. All of these tests results will enable parameters and power losses calculation in an induction motor to determine the motor efficiency. The final stage is to compare the efficiency of both the motors and discuss how the changes of rotor bar sizes will influence an induction motor performance.

1.4 Problem Statement

The usage of induction motors are in a very large scale nowadays, this situation has given researcher an idea to study further on how to increase the efficiency of an induction motor that could be able to save energy. This is because demand for energy is increasing rapidly due to the rapid growth of technology that resulted more factories and plants were built. Energy conservation from a single motor may be considered very small, but because of the number of motor usage, the conservation of energy has become very significant.

Based on the fact that an investigation should be conducted on how the efficiency of an induction motor could be improved, changes in the size of the rotor bar for a motor is believed to provide different efficiency. As such a study should be done whether the efficiency can be improved by increasing or reducing the size of the rotor bars.

1.5 Project Overview

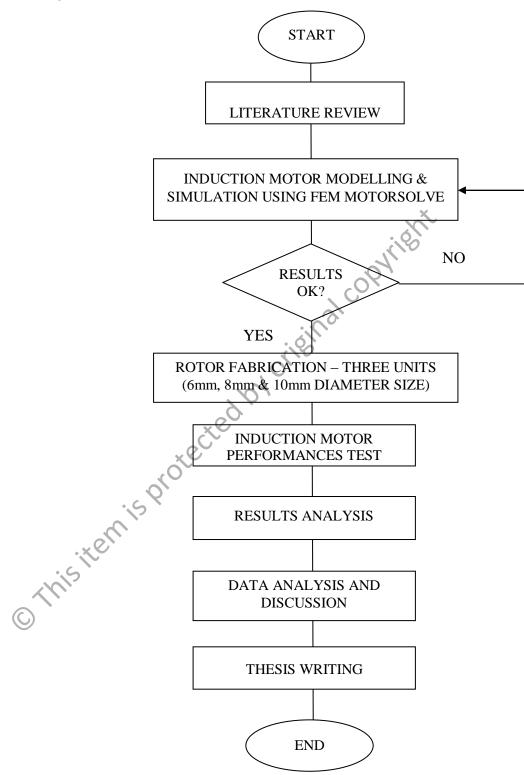


Figure 1.1: Flow Chart of Project Overview

1.6 Thesis Synopsis

Thesis will be divided into five parts, namely, introduction, literature review, Implementation of Methodologies, results and discussion and finally the conclusion.

The first chapter states on introduction, Aims and objectives, research scope, problem statement, project overview and thesis writing.

Chapter two discusses the literature review based on induction motor performance, types of experiment carried out by other researcher around the globe. The aspect of research concept of induction motor such as losses, the induction motor test such as no load, DC resistance, and block rotor test, literature on load factor evaluation is stated as well.

Chapter three which is the methodology chapter is divided to two main sections. The first section is research using FEM software and how the analysis is done using the software. The second section is more on how to fabricate actual hardware rotor that commenced with steel laminations cutting to complete rotor fabrication process. This will followed by the laboratory tests such as the no load, blocked rotor and DC resistance test.

Chapter four contains results and discussion from simulation of Motorsolve Ver 2.3 and comparison between the rotors with different sizes of rotor bars, the laboratory experimental analysis between two sizes of rotor diameter bar in terms of loss segregation and efficiency measurement. This topic will discuss the results obtained from software simulation and experiment using the hardware models. Induction motor model selected is based on 0.5 HP, 3 phase and 4 poles motor. Part simulation will examine from all angles, including losses in the motor, torque, flux density and finally