

PROPERTIES OF LOW DENSITY POLYETHYLEN/NATURAL RUBBER/CHEMICAL **MODIFIED WATER HYACINTH FIBERS (Eichhornia** othis item is protected by crassipes) COMPOSITES

TAN SOO JIN 0940410383

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

> School of Materials Engineering **UNIVERSITI MALAYSIA PERLIS**

> > 2013

UNIVERSITI MALAYSIA PERLIS

DECLARATION OF THESIS		
Author's full name :	TAN SOO JIN	
Date of birth :	12 JULY 1986	
Title :	PROPERTIES OF LOW DENSITY POLYETHYLENE/NATURAL RUBBER/CHEMICAL MODIFIED WATER HYACINTH FIBERS (<i>Eichhornia crassipes</i>) COMPOSITES	
Academic Session :	2012/2013	
I hereby declare that the thesis becomes the property of Universiti Malaysia Perlis (UniMAP) and to be placed at the library of UniMAP. This thesis is classified as :		
CONFIDENTIAL	(Contains confidential information under the Official Secret Act 1972)*	
RESTRICTED	(Contains restricted information as specified by the organization where research was done)*	
OPEN ACCESS	I agree that my thesis is to be made immediately available as hard copy or on-line open access (full text)	
I, the author, give permission to the UniMAP to reproduce this thesis in whole or in part for the purpose of research or academic exchange only (except during a period of years, if so requested above).		
This	Certified by:	
\bigcirc		
SIGNATU	RE SIGNATURE OF SUPERVISOR	
(NEW IC NO. / PA	ASSPORT NO.) NAME OF SUPERVISOR	
Date:	Date:	

NOTES: * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentially or restriction.

ACKNOWLEDGEMENT

First of all, thank God for giving me utmost strength, patience and ability to complete this thesis successfully.

I would like to express my greatest appreciation and sincere gratitute to my supervisor, Associate Professor Dr. Supri A. Ghani for the continuous support in my PhD study and research. He helped me with his enthusiasm, inspiration, and great effort in explaination clearly and simply. Throughout my thesis writing period, he provided encouragement, guidance, useful advices and motivations. I would like to extend my gratitude to my co-supervisor, Dr Teh Pei Leng for her cared and guidance on my study.

Special thank to Dr. Khairel Rafezi Ahmad, Dean of School of Materials Engineering for his support in completion my research and thesis. My sincere thanks also go to all the technicians and PLV of School of Materials Engineering for their generous effort and assistance in the laboratory's work; and not to forget to all the staffs in this school those help me directly and indirectly.

I dedicated special thanks to my friends and my postgraduate colleagues for helping me to get through the difficult times, and for all the emotional support they provided. My days of completion my PhD study would be extremely difficult without their help.

Last but not least, I record my gratitude to my lovely family especially my parents for their supports, understanding, loveliness and providing the financial support. I am also grateful to the Universiti Malaysia Perlis for giving me a space to learn and opportunity to complete my PhD study and thesis. Thank you very much.

TABLE OF CONTENTS

	PAGE
THESIS DECLARATION	i
ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	iii
LIST OF FIGURES	ix
LIST OF TABLES	xvii
LIST OF ABBREVIATIONS, SYMBOLS	xix
ABSTRAK	xxiii
ABSTRACT	XXV
CHAPTER 1: INTRODUCTION	
1.1 Research Background	1
1.2 Problem Statement	10
1.3 Objectives of Study	12
1.4 Organization of the Thesis	13
CHAPTER 2: LITERATURE REVIEW	
2.1 Thermoplastic Elastomers (TPEs)	15
2.1.1 Classification and Structure of Thermoplastic Elastomers	17
2.1.1.1 Styrenic Block Copolymers	17
2.1.1.2 Multi-Block Copolymers	18
2.1.1.3 Hard Polymer/Elastomer Combinations	18
2.1.1.4 Graft Copolymers	20
2.1.1.5 Ionomers	20

2.1.1.6 Core-Shell Morphologies	21
2.1.2 Thermoplastic Polyolefin Blends (TPOs)	22
2.1.3 Thermoplastic Vulcanizates (TPVs)	23
2.1.4 Thermoplastic Natural Rubber (TPNR)	24
2.2 Composites	26
2.2.1 Polymer Matrix Composites (PMC)	26
2.3 Polyethylene (PE)	27
2.3.1 Low Density Polyethylene (LDPE)	29
2.3.1.1 Properties of Low Density Polyethylene (LDPE)	29
2.3.1.2 Applications of Low Density Polyethylene (LDPE)	30
2.4 Natural Rubber (NR)	32
2.4.1 Properties of Natural Rubber (NR)	33
2.4.2 Applications of Natural Rubber (NR)	34
2.5 Fillers	36
2.6 Natural Fibers	38
2.6.1 Natural Fiber Composites	39
2.7 Interaction between Natural Fibers and Polymer Matrix	
2.7.1The Interphase and Interface in Composites	42
2.7.2 Wetting, Adhesion, and Dispersion	43
2.7.2.1 Chemical Bonding	45
2.7.2.2 Electrostatic Bonding	47
2.7.2.3 Mechanical Bonding	48
2.7.2.4 Interdiffusion	49
2.8 The Factors Influence Natural Fibers in Polymer Composites	49
2.9 Water Hyacinth	54
2.9.1 Major Components in Water Hyacinth	58
2.9.1.1 Cellulose	58
2.9.1.2 Hemicelluloses	60
2.9.1.3 Lignin	60
2.10 Compatibilizer	61
2.10.1 Polyethylene-Grafted-Maleic Anhydride (PE-g-MAH)	62

2.11 Chemical Modification	65
2.11.1 Poly (Methyl Methacrylate) (PMMA)	66
2.11.2 Poly (Vinyl Alcohol) (PVA)	68
2.11.3 Polyaniline (PANI)	71
2.11.4 Alkaline Treatment	73
2.11.5 Epoxy-Ethylene Diamine (EED)	75

CHAPTER 3: RESEARCH METHODOLOGY	
3.1 Materials	79
3.1.1 Raw Materials	79
3.1.2 Chemicals	80
3.1.3 Preparation of Water Hyacinth Fibers (WHF)	81
3.2 Chemical Modification of Water Hyacinth Fibers with Poly (Methyl	83
Methacrylate) (PMMA)	
3.3 Chemical Modification of Water Hyacinth Fibers with Poly (Vinyl	83
Alcohol) (PVA)	
3.4 Chemical Modification of Water Hyacinth Fibers with Polyaniline	84
(PANI)	
3.5 Alkaline Treatment on Water Hyacinth Fibers	84
3.6 Modification of Epoxy-Ethylene Diamine (EED) on Water Hyacinth	85
Fibers	
3.7 Preparation of LDPE/NR/WHF Composites with Compatibilizer	85
3.8 Preparation of Modified LDPE/NR/WHF Composites with Different	87
Chemicals	
3.9 Testings and Characterization	89
3.9.1 Tensile Test	89
3.9.2 Swelling Behavior Test	89
3.9.3 Scanning Electron Microscopy (SEM) Analysis	90
3.9.4 Fourier Transform Infrared (FTIR) Spectroscopy	90
3.9.5 Differential Scanning Calorimetry (DSC)	91
3.9.6 Thermogravimetric Analysis (TGA)	91

3.9.7 Capacity and Conductivity Measurements	92
3.9.8 X-ray Diffraction (XRD) Analysis	92
CHAPTER 4: RESULTS AND DISCUSSION	
4.1 Effects of Polyethylene-Grafted-Maleic Anhydride (PE-g-MAH) on	94
Properties of LDPE/NR/WHF Composites	
4.1.1 Tensile Properties	94
4.1.2 Swelling Behavior	98
4.1.3 Morphology Analysis	100
4.1.4 Spectroscopy Infrared Analysis	102
4.1.5 DSC Analysis	104
4.1.6 Thermal Degradation	106
4.1.7 X-ray Diffraction (XRD) Analysis	108
4.2 Effect of Poly (Methyl Methacrylate) (PMMA) Modified Water	111
Hyacinth Fibers on Properties of LDPE/NR/WHF Composites	
4.2.1 Tensile Properties	111
4.2.2 Swelling Behavior	114
4.2.3 Morphology Analysis	116
4.2.4 Spectroscopy Infrared Analysis	117
4.2.5 DSC Analysis	121
4.2.6 Thermal Degradation	123
4.2.7 X-ray Diffraction (XRD) Analysis	125
4.3 Effect of Poly (Vinyl Alcohol) (PVA) Modified Water Hyacinth	128
Fibers on Properties of LDPE/NR/WHF Composites	
4.3.1 Tensile Properties	128
4.3.2 Swelling Behavior	131
4.3.3 Morphology Analysis	132
4.3.4 Spectroscopy Infrared Analysis	134
4.3.5 DSC Analysis	137
4.3.6 Thermal Degradation	138
4.3.7 X-ray Diffraction (XRD) Analysis	141

4.4 Properties of LDPE/NR/WHF Composites: The Effect of Polyaniline	144
(PANI)	
4.4.1 Tensile Properties	144
4.4.2 Swelling Behavior	147
4.4.3 Morphology Analysis	148
4.4.4 Spectroscopy Infrared Analysis	150
4.4.5 Electrical Properties	154
4.4.6 DSC Analysis	156
4.4.7 Thermal Degradation	158
4.4.8 X-ray Diffraction (XRD) Analysis	160
4.5 Properties of LDPE/NR/WHF Composites: The Effect of Alkaline	163
Treatment	
4.5.1 Tensile Properties	163
4.5.2 Swelling Behavior	166
4.5.3 Morphology Analysis	167
4.5.4 Spectroscopy Infrared Analysis	170
4.5.5 DSC Analysis	173
4.5.6 Thermal Degradation	175
4.5.7 X-ray Diffraction (XRD) Analysis	178
4.6 Effects of Chemical Modification of Epoxy-Ethylene Diamine (EED)	181
on Water Hyacinth Fibers Filled Low Density Polyethylene/Natural	
Rubber Blends	
4.6.1 Tensile Properties	181
4.6.2 Swelling Behavior	184
4.6.3 Morphology Analysis	185
4.6.4 Spectroscopy Infrared Analysis	188
4.6.5 DSC Analysis	192
4.6.6 Thermal Degradation	194
4.6.7 X-ray Diffraction (XRD) Analysis	197

CHAPTER 5: CONCLUSIONS AND SUGGESTIONS

5.1 Conclusions	199
5.2 Suggestions	201

REFERENCES

APPENDICES

226

202

o this item is protected by original copyright

LIST OF FIGURES

PAGE

Figure 2.1	Illustration of molecular structure of soft and hard phases in thermoplastic elastomers.	16
Figure 2.2	Illustration of morphology of styrenic block copolymers.	17
Figure 2.3	Illustration of morphology of multi-block polymers with crystalline hard segments.	18
Figure 2.4	Illustration of morphology of hard polymer-elastomer blends.	19
Figure 2.5	Illustration of morphology of dynamic vulcanizates.	19
Figure 2.6	Clusters of ionic groups forming a cross-link M^+ = metal cation, A^- = anion.	21
Figure 2.7	Chemical structures for (a) ethylene and (b) polyethylene.	27
Figure 2.8	The structure of low density polyethylene.	39
Figure 2.9	Isoprene units in natural rubber.	32
Figure 2.10	Typical fillers particle shape.	37
Figure 2.11	A schematic description of an interphase and interface in a cross- section of wood-polymer composites.	43
Figure 2.12	Contact angle of a liquid drop on a solid surface.	44
Figure 2.13	Chemical bond between groups A on the surface and groups B on the other surface.	46
Figure 2.14	A schematic diagram of crosslink.	47
Figure 2.15	Mechanism of electrostatic attraction.	48
Figure 2.16	Mechanical bond formed when liquid polymer wets a rough solid surface.	48

Figure 2.17	Mechanism of interdiffusion.	49
Figure 2.18	Water hyacinth	54
Figure 2.19	Structure of cellulose.	59
Figure 2.20	Phenylpropane units of lignin (a) coniferyl alcohol (b) sinayl alcohol, and (c) <i>p</i> -coumaryl alcohol.	61
Figure 2.21	The structure of (a) block copolymers and (b) graft copolymers.	62
Figure 2.22	Chemical structure of maleic anhydride.	63
Figure 2.23	General mechanism of reaction between cellulose fiber surfaces with PE-g-MAH.	63
Figure 2.24	Chemical structure of (a) MMA monomer used to synthesis (b) PMMA.	67
Figure 2.25	Chemical structure of poly (vinyl alcohol).	69
Figure 2.26	Chemical structure of polyaniline (PANI).	71
Figure 2.27	Chemical structure of epoxy group per molecule	76
Figure 3.1	Stems of water hyacinth.	82
Figure 3.2	Water hyacinth fibers.	82
Figure 4.1	Effect of fiber loading and compatibilizer on tensile strength of LDPE/NR/WHF and LDPE/NR/WHF _{PE-g-MAH} composites.	95
Figure 4.2	Effect of fiber loading and compatibilizer on Young's modulus of LDPE/NR/WHF and LDPE/NR/WHF _{PE-g-MAH} composites.	97
Figure 4.3	Effect of fiber loading and compatibilizer on elongation at break of LDPE/NR/WHF and LDPE/NR/WHF _{PE-g-MAH} composites.	98
Figure 4.4	Effect of fiber loading and compatibilizer on molar sorption of LDPE/NR/WHF and LDPE/NR/WHF _{PE-g-MAH} composites.	99
Figure 4.5	 SEM morphologies of tensile fracture surface of LDPE/NR/WHF and LDPE/NR/WHF_{PE-g-MAH} composites, (a) LDPE/NR, (b) LDPE/NR/WHF-5, (c) LDPE/NR/WHF_{PE-g-MAH}-5, (d) LDPE/NR/WHF-15, (e) LDPE/NR/WHF_{PE-g-MAH}-15, (f) LDPE/NR/WHF-25, (g) LDPE/NR/WHF_{PE-g-MAH}-25. 	102

The FTIR spectra for (a) LDPE/NR/WHF _{PE-g-MAH} and (b) LDPE/NR/WHF composites.	103
DSC thermogram of LDPE/NR/WHF composites at different fiber loading.	105
DSC thermogram of LDPE/NR/WHF $_{PE-g-MAH}$ composites at different fiber loading.	105
Thermogravimetric curves of LDPE/NR/WHF composites at different fiber loading.	107
Thermogravimetric curves of LDPE/NR/WHF _{PE-g-MAH} composites at different fiber loading.	107
XRD diffractogram of LDPE/NR/WHF composites at different fiber loading.	109
XRD diffractogram of LDPE/NR/WHF _{PE-g-MAH} composites at different fiber loading.	109
Effect of fiber loading on tensile strength of LDPE/NR/WHF and LDPE/NR/WHF _{PMMA} composites.	112
Effect of fiber loading on Young's modulus of LDPE/NR/WHF and LDPE/NR/WHF _{PMMA} composites.	113
Effect of fiber loading on elongation at break of LDPE/NR/WHF and LDPE/NR/WHF _{PMMA} composites.	114
Effect of fiber loading on molar sorption of LDPE/NR/WHF and LDPE/NR/WHF _{PMMA} composites.	115
The SEM micrographs of tensile fracture surface of LDPE/NR/WHF and LDPE/NR/WHF _{PMMA} composites, (a) LDPE/NR/WHF-5, (b) LDPE/NR/WHF _{PMMA} -5, (c) LDPE/NR/WHF-15, (d) LDPE/NR/WHF _{PMMA} -15, (e) LDPE/NR/WHF-25, (f) LDPE/NR/WHF _{PMMA} -25.	117
The FTIR spectra for (a) WHF_{PMMA} and (b) WHF.	118
The FTIR spectra for (a) LDPE/NR/WHF and (b) LDPE/NR/WHF _{PMMA} composites.	119
The propose interaction of PMMA modified water hyacinth fibers with LDPE/NR phases.	120
	 The FTIR spectra for (a) LDPE/NR/WHF_{PE-g-MAH} and (b) LDPE/NR/WHF composites. DSC thermogram of LDPE/NR/WHF composites at different fiber loading. DSC thermogram of LDPE/NR/WHF_{PE-g-MAH} composites at different fiber loading. Thermogravimetric curves of LDPE/NR/WHF composites at different fiber loading. Thermogravimetric curves of LDPE/NR/WHF composites at different fiber loading. XRD diffractogram of LDPE/NR/WHF composites at different fiber loading. XRD diffractogram of LDPE/NR/WHF composites at different fiber loading. XRD diffractogram of LDPE/NR/WHF composites at different fiber loading. XRD diffractogram of LDPE/NR/WHF composites at different fiber loading. Effect of fiber loading on tensile strength of LDPE/NR/WHF and LDPE/NR/WHF pMMA composites. Effect of fiber loading on Young's modulus of LDPE/NR/WHF and LDPE/NR/WHF_{PMMA} composites. Effect of fiber loading on molar sorption of LDPE/NR/WHF and LDPE/NR/WHF pMMA composites. Effect of fiber loading on molar sorption of LDPE/NR/WHF and LDPE/NR/WHF and LDPE/NR/WHF and LDPE/NR/WHF-5, (b) LDPE/NR/WHF_{PMMA}-25, (c) LDPE/NR/WHF-15, (d) LDPE/NR/WHF_{PMMA}-15, (e) LDPE/NR/WHF-15, (d) LDPE/NR/WHF_{PMMA}-25. The FTIR spectra for (a) WHF_{PMMA} and (b) WHF. The FTIR spectra for (a) LDPE/NR/WHF and (b) LDPE/NR/WHF and (b) LDPE/NR/WHF_{PMMA} composites.

Figure 4.21	DSC thermogram of LDPE/NR/WHF composites at different fiber loading.	122
Figure 4.22	DSC thermogram of LDPE/NR/WHF $_{PMMA}$ composites at different fiber loading.	122
Figure 4.23	Thermogravimetric curves of LDPE/NR/WHF composites at different fiber loading.	124
Figure 4.24	Thermogravimetric curves of LDPE/NR/WHF _{PMMA} composites at different fiber loading.	124
Figure 4.25	XRD diffractogram of LDPE/NR/WHF composites at different fiber loading.	126
Figure 4.26	XRD diffractogram of LDPE/NR/WHF _{PMMA} composites at different fiber loading.	126
Figure 4.27	Effect of fiber loading on tensile strength of LDPE/NR/WHF and LDPE/NR/WHF _{PVA} composites.	129
Figure 4.28	Effect of fiber loading on Young's modulus of LDPE/NR/WHF and LDPE/NR/WHF _{PVA} composites.	130
Figure 4.29	Effect of fiber loading on elongation at break of LDPE/NR/WHF and LDPE/NR/WHF _{PVA} composites.	131
Figure 4.30	Effect of fiber loading on molar sorption of LDPE/NR/WHF and LDPE/NR/WHF _{PVA} composites.	132
Figure 4.31	The SEM micrographs of tensile fracture surface of LDPE/NR/WHF and LDPE/NR/WHF _{PVA} composites, (a) LDPE/NR/WHF-5, (b) LDPE/NR/WHF _{PVA} -5, (c) LDPE/NR/WHF-15, (d) LDPE/NR/WHF _{PVA} -15, (e) LDPE/NR/WHF-25, (f) LDPE/NR/WHF _{PVA} -25.	134
Figure 4.32	The FTIR spectra for (a) WHF_{PVA} and (b) WHF.	135
Figure 4.33	The FTIR spectra for (a) LDPE/NR/WHF _{PVA} and (b) LDPE/NR/WHF composites.	136
Figure 4.34	Propose interaction of PVA modified water hyacinth fibers.	136
Figure 4.35	DSC thermogram of LDPE/NR/WHF composites at different fiber loading.	137

Figure 4.36	DSC thermogram of LDPE/NR/WHF $_{PVA}$ composites at different fiber loading.	138
Figure 4.37	Thermogravimetric curves of LDPE/NR/WHF composites at different fiber loading.	139
Figure 4.38	Thermogravimetric curves of LDPE/NR/WHF _{PVA} composites at different fiber loading.	140
Figure 4.39	The XRD diffractogram of LDPE/NR/WHF composites at different fiber loading.	142
Figure 4.40	The XRD diffractogram of LDPE/NR/WHF _{PVA} composites at different fiber loading.	142
Figure 4.41	Effect of fiber loading on tensile strength of LDPE/NR/WHF and LDPE/NR/WHF _{PANI} composites.	145
Figure 4.42	Effect of fiber loading on Young's modulus of LDPE/NR/WHF and LDPE/NR/WHF _{PANI} composites.	146
Figure 4.43	Effect of fiber loading on elongation at break of LDPE/NR/WHF and LDPE/NR/WHF _{PANt} composites.	147
Figure 4.44	Effect of fiber loading on molar sorption of LDPE/NR/WHF and LDPE/NR/WHF _{PANI} composites.	148
Figure 4.45	The SEM morphology of tensile fracture surface of LDPE/NR/WHF and LDPE/NR/WHF _{PANI} composites, (a) LDPE/NR/WHF-5, (b) LDPE/NR/WHF _{PANI} -5, (c) LDPE/NR/WHF-15, (d) LDPE/NR/WHF _{PANI} -15, (e) LDPE/NR/WHF-25, (f) LDPE/NR/WHF _{PANI} -25.	150
Figure 4.46	The FTIR spectra for (a) WHF_{PANI} and (b) WHF.	151
Figure 4.47	The FTIR spectra for (a) LDPE/NR/WHF $_{PANI}$ and (b) LDPE/NR/WHF composites.	152
Figure 4.48	Illustration of the mechanism of interaction of WHF_{PANI} with LDPE/NR phases.	153
Figure 4.49	Capacity for LDPE/NR/WHF composites and LDPE/NR/WHF _{PANI} composites at different fiber loading.	155
Figure 4.50	Conductivity for LDPE/NR/WHF composites and LDPE/NR/WHF _{PANI} composites at different fiber loading.	155

Figure 4.51	DSC thermogram of LDPE/NR/WHF composites at different fiber loading	157
Figure 4.52	DSC thermogram of LDPE/NR/WHF _{PANI} composites at different fiber loading.	157
Figure 4.53	Thermogravimetric curves of LDPE/NR/WHF composites at different fiber loading.	159
Figure 4.54	Thermogravimetric curves of LDPE/NR/WHF _{PANI} composites at different fiber loading.	159
Figure 4.55	XRD diffractograms of LDPE/NR/WHF composites at different fiber loading.	161
Figure 4.56	XRD diffractograms of LDPE/NR/WHF _{PAN} composites at different fiber loading.	161
Figure 4.57	The effect of alkaline treatment on tensile strength of LDPE/NR/WHF and LDPE/NR/WHF _{NaOH} composites at different fiber loading.	164
Figure 4.58	The effect of alkaline treatment on Young's modulus of LDPE/NR/WHF and LDPE/NR/WHF _{NaOH} composites at different fiber loading.	165
Figure 4.59	The effect of alkaline treatment on elongation at break of LDPE/NR/WHF and LDPE/NR/WHF _{NaOH} composites at different fiber loading.	166
Figure 4.60	The effect of alkaline treatment on molar sorption of LDPE/NR/WHF and LDPE/NR/WHF _{NaOH} composites at different fiber loading.	167
Figure 4.61	The SEM morphology of (a) WHF and (b) WHF_{NaOH} .	168
Figure 4.62	The SEM micrographs of tensile fracture surface of LDPE/NR/WHF and LDPE/NR/WHF _{NaOH} composites, (a) LDPE/NR/WHF-5, (b) LDPE/NR/WHF _{NaOH} -5, (c) LDPE/NR/WHF-15, (d) LDPE/NR/WHF _{NaOH} -15, (e) LDPE/NR/WHF-25, (f) LDPE/NR/WHF _{NaOH} -25.	170
Figure 4.63	The FTIR spectra for (a) WHF_{NaOH} and (b) WHF.	171
Figure 4.64	The FTIR spectra for (a) LDPE/NR/WHF _{NaOH} and (b) LDPE/NR/WHF composites.	172

Figure 4.65	Illustration of mechanism for the LDPE/NR with alkali treated water hyacinth fibers (WHF _{NaOH}).	173
Figure 4.66	DSC thermogram of LDPE/NR/WHF composites at different fiber loading.	174
Figure 4.67	DSC thermogram of LDPE/NR/WHF $_{NaOH}$ composites at different fiber loading.	175
Figure 4.68	Thermogravimetric curves of LDPE/NR/WHF composites at different fiber loading.	176
Figure 4.69	Thermogravimetric curves of LDPE/NR/WHF _{NaOH} composites at different fiber loading.	177
Figure 4.70	XRD diffractograms of LDPE/NR/WHF composites at different fiber loading.	179
Figure 4.71	XRD diffractograms of LDPE/NR/WHF _{NaOH} composites at different fiber loading.	179
Figure 4.72	The tensile strength of LDPE/NR/WHF and LDPE/NR/WHF _{EED} composites at different fiber loading.	182
Figure 4.73	The Young's modulus of LDPE/NR/WHF and LDPE/NR/WHF _{EED} composites at different fiber loading.	183
Figure 4.74	The elongation at break of LDPE/NR/WHF and LDPE/NR/WHF _{EED} composites at different fiber loading.	184
Figure 4.75	The molar sorption of LDPE/NR/WHF and LDPE/NR/WHF _{EED} composites at different fiber loading.	185
Figure 4.76	The SEM morphology of (a) WHF and (b) WHF_{EED}	186
Figure 4.77	The SEM morphology of tensile fracture surface of LDPE/NR/WHF and LDPE/NR/WHF _{EED} composites, (a) LDPE/NR/WHF-5, (b) LDPE/NR/WHF _{EED} -5, (c) LDPE/NR/WHF-15, (d) LDPE/NR/WHF _{EED} -15, (e) LDPE/NR/WHF-25, (f) LDPE/NR/WHF _{EED} -25.	187
Figure 4.78	The FTIR spectra for (a) WHF_{EED} and (b) WHF .	189
Figure 4.79	The FTIR spectra for LDPE/NR/WHF _{EED} and (b) LDPE/NR/WHF composites	190

- Figure 4.80 Illustration of crosslink and interaction of WHF_{EED} with 192 LDPE/NR blends.
- Figure 4.81 DSC thermogram of LDPE/NR/WHF composites at different 193 fiber loading.
- Figure 4.82 DSC thermogram of LDPE/NR/WHF_{EED} composites at different 194 fiber loading.
- Figure 4.83 Thermogravimetric curves of LDPE/NR/WHF composites at 195 different fiber loading.
- Figure 4.84 Thermogravimetric curves of LDPE/NR/WHF_{EED} composites at 196 different fiber loading.
- Figure 4.85 XRD diffractogram of LDPE/NR/WHF composites at different 197 fiber loading.
- Figure 4.86 XRD diffractogram of LDPE/NR/WHF_{EED} composites at 198 different fiber loading.

LIST OF TABLES

Table 2.1	Classification of polyethylene according to ASTM D 883-00.	28
Table 2.2	Different types of fillers.	38
Table 2.3	Chemical composition of water hyacinth.	55
Table 3.1	Physical properties of LDPE.	79
Table 3.2	Properties of NR grade SMR L.	80
Table 3.3	Formulation of LDPE/NR/WHF and LDPE/NR/WHF _{PE-g-MAH} at different fiber loading.	86
Table 3.4	Formulation of different chemicals modified LDPE/NR/WHF composites with different fiber loading.	88
Table 4.1	Thermal parameter for LDPE/NR/WHF and LDPE/NR/WHF _{PE-g-MAH} composites at different fiber loading.	106
Table 4.2	Temperature of 50 % weight loss (T _{-50%wt}) , final decomposition temperature, and residual mass for LDPE/NR/WHF and LDPE/NR/WHF _{PE-g-MAH} composites.	108
Table 4.3	Data of average interparticle spacing (d) for LDPE/NR/WHF and LDPE/NR/WHF _{PE-g-MAH} composites at different fiber loading.	110
Table 4.4	Thermal parameter for LDPE/NR/WHF and LDPE/NR/WHF _{PMMA} composites at different fiber loading.	123
Table 4.5	Temperature of 50 % weight loss ($T_{-50\%wt}$), final decomposition temperature, and residual mass for LDPE/NR/WHF and LDPE/NR/WHF _{PMMA} composites.	125
Table 4.6	Data of average interparticle spacing (d) for LDPE/NR/WHF and LDPE/NR/WHF _{PMMA} composites at different fiber loading.	127
Table 4.7	Thermal parameter for LDPE/NR/WHF and LDPE/NR/WHF $_{PVA}$ composites at different fiber loading.	138

- Table 4.8Temperature of 50 % weight loss ($T_{-50\%wt}$), final decomposition140temperature, and residual mass for LDPE/NR/WHF and
LDPE/NR/WHF_{PVA} composites.140
- Table 4.9Data of average interparticle spacing (d) for LDPE/NR/WHF and143LDPE/NR/WHF_{PVA} composites at different fiber loading.
- Table 4.10Thermal parameter for LDPE/NR/WHF and LDPE/NR/WHF
panie 158
composites at different fiber loading.158
- Table 4.11Temperature of 50 % weight loss (T-50%wt), final decomposition160temperature, and residual mass for LDPE/NR/WHF and
LDPE/NR/WHFPANI composites.160
- Table 4.12Data of average interparticle spacing (d) for EDPE/NR/WHF and 162LDPE/NR/WHFPANI composites at different fiber loading.
- Table 4.13 Thermal parameter for LDPE/NR/WHF and 175 $LDPE/NR/WHF_{NaOH}$ composites at different fiber loading.
- Table 4.14Temperature of 50 % weight loss ($T_{-50\%wt}$), final decomposition177temperature, and residual mass for LDPE/NR/WHF and
LDPE/NR/WHF_{NaOH} composites.100 mm = 100 mm = 10
- Table 4.15Data of average interparticle spacing (d) for LDPE/NR/WHF and180LDPE/NR/WHF_{NaOH} composites at different fiber loading.
- Table 4.16Thermal parameter for LDPE/NR/WHF and LDPE/NR/WHF
EED194composites at different fiber loading.
- Table 4.17Temperature of 50 % weight loss ($T_{-50\%wt}$), final decomposition196temperature, and residual mass for LDPE/NR/WHF and
LDPE/NR/WHF_{EED} composites.196
- Table 4.18Data of average interparticle spacing (d) for LDPE/NR/WHF and198LDPE/NR/WHFLDPE/NR/WHF198

LIST OF ABBREVIATIONS, SYMBOLS

ASTM	American Society for Testing and Materials
BF	Banana fiber
CF	Curaua fibers
СМС	Ceramic matrix composites
CNFs	Cellulose nanofibers
DGEBA	Diglycidyl ether of bisphenl A
DSC	Differential scanning calorimetry
EA + MMA	Ethyl acrylate with methyl methacrylate
EED	Epoxy-ethylene diamine
EPDM	Ethylene propylene diene monomer
ER	Epoxy resin
ESD	Electrostatic dispersive
FTIR TI	Fourier transform infrared
HDPE	High density polyethylene
HVA-2	N, N-m-phenylenebismaleimide
IC	Integrated circuit
ICI	Imperial Chemical Industries
IM	Injection molding
KF	Kenaf fiber
КР	Kenaf powder

L/D	Length-to-diameter ratio
LDPE	Low density polyethylene
LLDPE	Linear low density polyethylene
LNR	Liquid natural rubber
MAH	Maleic anhydride
MAPE	Maleic anhydride polyethylene
MAPP	Maleic anhydride polypropylene
MLDPE	Maleated low density polyethylene
MMC	Metal matrix composites
MPR	Melt-processible rubber
NaOH	Sodium hydroxide
NBR	Acrylonitrile butadiene rubber
NBRr	Recycled acrylonitrile butadiene rubber
NBR-g-MMA	Acrylonitrile butadiene rubber grafted methyl methacrylate
NR	Natural rubber
NRL	Natural rubber latex
NRP	Natural rubber powder
он ©	Hydroxyl groups
PA	Phthalic anhydride
PA-6	Polyamide-6
PANI	Polyaniline
PANI-DBSA	Polyaniline doped with dodecylbenzene sulfonic acid
PE	Polyethylene
PEG	Polyethylene glycol

PE-g-MAH	Polyethylene-grafted-maleic anhydride
PP-g-MAH	Maleic anhydride grafted polypropylene
PF	Phenol-Formaldehyde
PLA	Poly (lactic acid)
РМС	Polymer matrix composites
PMMA	Poly (methyl methacrylate)
РР	Polypropylene
PPEAA	Poly (propylene-ethylene-acrylic acid)
PRIM	Rubber Research Institute Malaysia
PS	Polystyrene
PVA	Poly (vinyl alcohol)
rHDPE	Recycled high density polyethylene
RTR	Reclaimed tire rubber
RWF	Rubber wood finer
SBR	Styrene butadiene rubber
SEM	Scanning Electron Microscopy
SHF (Sunn hemp fibers
T-50%wt	Temperature at 50 % weight loss
T _D	Maximum decomposition temperature
Tg	Glass transition temperature
T _m	Melting temperature
T _o	Onset degradation temperature
TEM	Transmission electron microscopy
TGA	Thermogravimetric analysis
TPEs	Thermoplastic elastomers

Thermoplastic natural rubber TPNR

Thermoplastic polyolefin blends TPOs

TPVS Thermoplastic vulcanizates

Ultra-fine-vulcanized acrylonitrile butadiene rubber powder UFNBRP

WHF Water hyacinth fibers

WRHA

XRD

o this item is protected by original copyright

Sifat-sifat Komposit Polietilena Ketumpatan Rendah/Getah Asli/Serat Keladi Bunting (Eichhornia crassipes) Yang Diubahsuai Secara Kimia

ABSTRAK

Komposit serat semula jadi daripada polietilena ketumpatan rendah (LDPE)/getah asli (NR)/serat keladi bunting (WHF) telah dikaji. Komposit disediakan dengan menggunakan Brabender Plasticorder pada suhu 160 °C dengan kelajuan motor pada 50 rpm. Kesan pembebanan WHF, pengserasi dan pelbagai jenis modifikasi kimia ke atas sifat mekanikal, sifat pembengkakan, sifat morfologi, sifat terma, pencirian spektroskopi infra merah dan pencirian XRD terhadap komposit LDPE/NR/WHF telah dikaji. Pengserasi yang digunakan dalam kajian ini jalah poljetilena-dicantumkan-maleik anhidrida (PE-g-MAH). Pelbagai jenis modifikasi kimia yang digunakan ke atas komposit LDPE/NR/WHF adalah poli (metil metakrilat) (PMMA), poli (vinil alkohol) (PVA), polianilin (PANI), rawatan alkali (NaOH), dan epoksi-etilena diamina (EED). Komposit dengan pengserasi meningkat 15.38 % pada kekuatan tegangan dan 17.63 % pada modulus Young tetapi menurun 35.79 % pada pemanjangan pada takat putus, 26.21 % pada molar penyerapan, dan 4.22 % pada purata jarak antara zarah. Komposit LDPE/NR/WHF dimodifikasi dengan MMA menunjukkan penambahan 29.18 % pada kekuatan tegangan, 31.86 % pada modulus Young, 35.66 % pada pemanjangan pada takat putus manakala penurunan sebanyak 5.36 % pada molar penyerapan dan 5.84 % pada purata jarak antara zarah. Komposit LDPE/NR/WHF dimodifikasi dengan PVA menunjukkan satu peningkatan dalam kekuatan tegangan, modulus Young, dan pemanjangan pada takat putus di mana penambahan masing-masing sebanvak 23.96 %, 16.34 %, dan 24.69 %, manakala molar penyerapan dan purata jarak antara zarah masing-masing berkurang sebanyak 3.22 % dan 2.35 %. Komposit LDPE/NR/WHF dimodifikasi dengan PANI menunjukkan penambahan sebanyak 4.71 % pada kekuatan tegangan, 24.46 % pada modulus Young, 85.5 % pada pemanjangan pada takat putus tetapi berkurang sebanyak 3.60 % pada molar penyerapan dan 11.29 % pada purata jarak antara zarah. Serat keladi bunting dimodifikasi dengan NaOH dalam komposit LDPE/NR/WHF menunjukkan satu penambahan sebanyak 2.46 %, 202.33 % dan 68.77 %, masing-masing dalam kekuatan tegangan, modulus Young dan pemanjangan pada takat putus manakala penurunan sebanyak 25.30 % dan 19.39 %, masing-masing dalam molar penyerapan dan purata jarak antara zarah. Komposit LDPE/NR/WHF dimodifikasi dengan EED bertambah sebanyak 16.30 % pada kekuatan tegangan, 17.13 % modulus Young , dan 507.05 % pemanjangan pada takat putus tetapi berkurang sebanyak 8.6 % pada molar penyerapan dan 11.52 % purata jarak antara zarah. Komposit LDPE/NR/WHF dimodifikasi dengan PE-g-MAH, PMMA, PVA, PANI, NaOH and EED menunjukkan kestabilan terma yang baik tetapi pengurangan pada % penghabluran kecuali untuk komposit LDPE/NR/WHF dimodifikasi dengan PMMA. Mikrograf SEM permukaan patahan tegangan untuk komposit yang dimodifikasi dengan kimia menunjukkan interaksi antara muka dan lekatan antara WHF dengan adunan LDPE/NR telah meningkat. SEM micrograf untuk WHF yang dimodifikasi dengan NaOH and EED menunjukkan permukaan yang kasar untuk lekatan yang lebih baik. Komposit LDPE/NR/WHF dimodifikasi dengan PANI