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POLARISASI TERAS NUKLEUS DALAM  

LAMBDA (ΛΛΛΛ    ) HYPERNUCLEI 

ABSTRAK 

Tindak balas teras nukleus  kepada Λ dalam hypernucleus dikaji dengan 

penghampiran kepadatan tempatan. Ini mengeluarkan tenaga dan jejari nukleus teras 

serta Λ-tenaga zarah tunggal (s.p.) yang baik. Kesan polarisasi Λ bergantung kepada 

tindakbalas teras melalui "kesan" mampatan modulus KA nukleus. Untuk kelas 

tertentu tenaga berfungsi, KA didapati hampir bebas daripada modulus mampatan K 

nuklear yang tak terhingga. Ini sesungguhnya adalah satu hasil yang mengejutkan, dan 

bertentangan dengan pengiraan Hartree-Fock dengan interaksi yang berkesan. Sebab-

sebab perbezaan ini dikaji dengan teliti. Kami menganggap nilai-nilai K dalam julat ≈ 

100-400 MeV. Di samping itu, kesan-kesan polarisasi juga bergantung secara kritikal 

pada D(ρ), mengikat Λ dalam hal nuklear pada ketumpatan ρ. Untuk hanya satu daya 

langsung ΛN: D ∝ ρ dan pengecutan nukleus teras membawa kepada polarisasi teras 

yang secara relatifnya lebih besar. Walau bagaimanapun, untuk "saturating" D(ρ) 

(dengan maksimum pada ρm < ρ0, di mana ρ0 adalah keseimbangan ketumpatan  

nuklear), yang diperlukan untuk menetapkan s.p. ikatan tenaga hypernuclei s-Shell  

dan data berselerak tenaga  rendah Λp, dan yang terhasil daripada daya ΛN (termasuk 

pertukaran) dan daya ΛNN, mungkin terdapat pengembangan nukleus dengan 

nucleons yang mengalir dari kawasan pedalaman ke  permukaan. Ini ditunjukkan 

untuk mengurangkan kesan-kesan polarisasi teras ketara (ρm dalam kejiranan ρ0). 

Perubahan yang terhasil  dalam punca kuasa dua min jejari dan tenaga teras 

bergantung ke atas A, tetapi kebanyakannya sangat kecil, mewajarkannya untuk 

pengabaian. Kerja-kerja sekarang ini menunjukkan bahawa Λ boleh digunakan 

sebagai alat yang boleh dipercayai untuk menyiasat sifat-sifat nukleus. 
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CORE NUCLEUS POLARIZATION IN LAMBDA (ΛΛΛΛ    ) 

HYPERNUCLEI 

ABSTRACT 

The response of the core nucleus to the Λ in a hypernucleus is studied with a local 

density approximation. This reproduces the energies and radii of the core nuclei as 

well as the Λ-single particle (s.p.) energies quite well. The polarizing effect of the Λ 

depends on the core response through an “effective” compression modulus  KA of the 

nucleus. For certain class of energy functional, KA is found to be almost independent 

of the compression modulus K of the infinite nuclear matter. This indeed is a 

surprising result, and at variance with the Hartree-Fock calculations with effective 

interactions. Reasons for this discrepancy were carefully examined, by considering 

values of K in the range ≈ 100-400 MeV. Furthermore, the polarizing effects also 

depend critically on D(ρ), the Λ binding in nuclear matter at density ρ. For only a 

direct ΛN force: D ∝ ρ and the core nucleus contracts giving rise to a relatively larger 

core polarization. However, for a “saturating” D(ρ) (with a maximum at ρm < ρ0, 

where ρ0 is the nuclear matter equilibrium density), which is required to fit the s.p. 

data, the s-Shell hypernuclei binding energies and the low energy Λp scattering data, 

and which results from a ΛN force (including exchange) and  ΛNN forces, there may 

be an expansion of the nucleus with nucleons flowing from the interior to the surface. 

This is shown to reduce the core polarization effects substantially (for ρm in the 

neighborhood of ρ0). The resulting changes in root mean square radius and core 

energy depend on A, but are mostly very small, justifying their general neglect.  The 

present work thus demonstrates that Λ can be used as a reliable tool to probe the 

properties of nuclei.  
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

 

The study of hypernuclear is fundamental for improving our knowledge on the 

strange particle-nucleus interaction that in turn is essential to extend the description of 

the structure of baryon-baryon interactions and on the properties of the nucleus itself. 

The first hypernucleus event was reported more than fifty years ago (Danysz &  

Pniewski, 1953). Since then substantial progress has been made in the experiment as 

well as in the theoretical areas. In the first two decades, emulsion experiments 

provided a unique source of information on hypernuclei. This provided valuable 

information regarding the binding energies of Λ hyperon, particularly in the light 

hypernuclei and their weak decay rates. Substantial progress has been made since 

then. Combining the data of previous experiments (Davis & Pniewski, 1986) 

including the Bubble Chamber experiments, the −K  stopped and in-flight ( −K , ±π ) 

reaction and the associated pair-production (+π , +K  ) (Bertini et al. 1980) we have 

now more than 30 well-established hypernuclei. Experiments carried out at CERN 

(Brückner, 1975, 1976, 1978; Bertini, 1979, 1981; Povh, 1981; Bedjidian et al. 1980), 

Brookhaven (BNL) (Chrien et al. 1979; May et al. 1983; May, 1982) and KEK 

(Yamazaki & Ishikawa, 1982) which gave new data on excited state energies, 

production intensities and level widths for a number of hypernuclei. These 

experiments utilized the (−K , ±π ) reactions. The new data prompted large number 

of theoretical studies to explain the data and decipher information on baryon-baryon 

interaction in the strange sector. However, considerable effort is required to make 
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 2

further prediction pertaining to many aspects of hypernuclear physics. The present 

work is mainly concerned with the use of Λ particle to probe the structure of core 

nuclei. In general, studies of hypernuclei provide important information for 

understanding the hyperon-nuclear ΛN and ΛNN interaction. 

 

The lightest hyperon is the neutral Λ with strangeness, S = -1 and spin = 
2

1 . 

The Λ particle bound to a nucleus  has a mass of 1115.6 MeV which is about 1.2 times 

that of a nucleon. In the baryon hypernuclear picture, the Λ is distinguishable from the 

nucleon, so it is allowed to occupy any single particle orbital in the nucleus even 

taken up by nucleons, without the constrains of the Pauli principle. This single 

particle structure is observed even in the 1s orbit in heavy nuclei. The Λ thus provides 

one of the best examples of single particle shell structure in nuclear physics. 

 

It is now well established that Λ forms bound state with all stable nuclei as 

well as with some nuclei which are normally not particle-stable. These Λ-nucleus 

systems which are referred to as Λ hypernuclei are symbolically represented asZA
Λ , 

where ‘Z’ denotes the nuclear charge and ‘A’ is the total mass number. 

 

In addition to Λ hypernuclei we also have Σ  and Ξ hypernuclei but these are 

not studied in the present work. The additional degree of freedom, namely the 

strangeness, in all these hypernuclei constitutes a rich and important extension of 

nuclear physics in the area of hadronic interaction and structure studies. 
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 3

1.2  Motivation 

 

 The theoretical study of hypernuclei has focused strongly on learning about 

the strong and weak hyperon-nuclear interactions (Dalitz, Herndon & Tang, 1972; 

Gal, 1975; Bodmer & Usmani, 1988). In particular, we have some reasonable 

knowledge of the strong ΛN, ΛNN and ΛΛ forces (Bodmer, Usmani & Carlson, 1984; 

Bodmer & Usmani, 1986; Bodmer & Usmani, 1987; Usmani, Bodmer, & Sharama, 

2004; Sinha, Usmani & Taib, 2002; Usmani & Bodmer, 1999; Rijken & Yamamoto, 

2006), although there is much more to be learnt. However, there has been the long 

expressed hope that if the hyperon-nuclear interaction is reasonably well known, one 

may use the hyperon, in particular the Λ, to probe the structure of core nuclei. This 

hope arises from the consideration that the Λ, being distinguishable, can occupy any 

state in the nucleus. Also, the lifetime of Λ-hypernuclei is of the order of 10-10 

seconds, these systems can then be regarded as stable on the strong nuclear time scale. 

Thus one may address such questions as the effect of Λ on the moment of inertia and 

on rotational bands of the core nucleus, and in general consider the response of nuclei 

to the presence of a Λ. It may also be possible in future that Λ single particle energies 

in higher angular momentum states in heavy nuclei may yield some information about 

nuclear surface properties. In the present work, we study the effect of a Λ on spherical 

core nuclei. In particular, we calculate the changes in binding energy (core 

polarization energy) and of the root mean square (rms) radii of the core nuclei due to 

presence of the Λ.  

 

The presence of a Λ in hypernucleus causes a compression or dilation of the 

core nucleus depending upon the nature of the Λ-nuclear interactions (Lanskoǐ & 

 

 

 

 

 

 

 

 

 

 

 

©
 Th
is 
ite
m 
is 
pr
ot
ec
te
d b
y o
rig
ina
l c
op
yri
gh
t 



 4

Tret’yakova, 1989; Ho & Volkov, 1969; Ho & Volkov, 1970; Žofka & Sotona, 1978; 

Rayet, 1981). The relationship between the incompressibility and the change in the 

core size as well as the polarization energy due to presence of Λ has been extensively 

studied mainly within the Hartree-Fock approximation using Skyrme and finite range 

effective interactions (Lanskoǐ & Tret’yakova, 1989; Ho & Volkov, 1969; Ho & 

Volkov, 1970; Žofka & Sotona, 1978; Rayet, 1981; Žofka, 1980; Žofka, 1982; 

Bassichis & Gal, 1970; Rayet, 1976; Lanskoy & Yamamoto, 1997; Lanskoy,  1998). 

A few studies pertain to model calculations (Lanskoǐ & Tret’yakova, 1989; Feshbach, 

1976) based upon qualitative considerations. The polarization energies are found to be 

0.1 to 1.2 MeV  in the range 16≤A≤40 and increases or stays constant with respect to 

A at least within this range (Lanskoǐ & Tret’yakova, 1989; Žofka, 1980). The core 

polarization energies have also been found to decrease as K increases. In one case of 

O16
Λ , it was found to increase with K  (Lanskoy, 1998). However, these values of core 

polarization energies are not small and secondly to our knowledge they are mostly 

confined to light and medium A nuclei. It was demonstrated in (Usmani, Bodmer & 

Sharama, 2004) that for He6
ΛΛ , the core polarization effect magnifies in double 

hypernuclei where the polarization energies increase roughly by a factor of 3 or more 

(Lanskoy, 1998; Hiyama, Kamimura, Motoba, Yamada & Yamamoto, 2002). Their 

inclusion assumes importance in cluster model calculations where in a few cases a 

rigid core approximation has been used. For a consistent treatment of hypernuclei it is 

thus desirable that we study core polarization in greater detail. The only empirical 

knowledge about core-polarization comes from a γ transition and is limited to 

contraction of the Li6  core nucleus in  Li7
Λ  (Tanida et al., 2001). But this represents a 

very special situation where the Λ probably shrinks the rms radius of the loosely 
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 5

bound p-shell nucleons by a large amount. We shall very briefly comment on this at a 

later stage.  

 

1.3 Objectives and Scope 

 

In the present study,  the main objective is develop an extended Thomas-Fermi 

theory using a local density approach (“Thomas Fermi” model for short) to calculate 

binding energies, root mean square radii, density distributions  for nuclei and 

hypernuclei and demonstrate that for “realistic” Λ-nuclear interactions, the core 

polarization effects are in general very small, both the polarizing energies as well as 

the change in rms radii. The smallness of the core polarization effects on radii was 

also pointed out by Rayet (Rayet, 1981) who inferred that presence of a repulsive 

three-body ΛNN force may turn a contraction into dilation for O16
Λ . A dilation of  the 

core nucleus in presence of Λ has also been found (Lanskoǐ & Tret’yakova, 1989), but 

in most of the studies contraction is a preferred conclusion (Lanskoǐ & Tret’yakova, 

1989; Ho & Volkov, 1969; Ho & Volkov, 1970; Žofka & Sotona, 1978; Rayet, 1981; 

Žofka, 1980; Žofka, 1982; Bassichis & Gal, 1970; Rayet, 1976; Lanskoy & 

Yamamoto, 1997; Lanskoy,  1998; Feshbach, 1976; Hiyama, Kamimura, Motoba, 

Yamada, & Yamamoto, 2002; Tanida et al., 2001). 

 

For a direct ΛN interaction, our results are in line with earlier studies. 

However, there are  important major differences. We find that the behavior of core 

polarization depends upon an “effective compression modulus”, KA (to be defined 

later) of a particular nucleus and on the structure of nuclear surface. It does not 
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 6

depend directly on the compression modulus K of infinite nuclear matter. KA is 

commonly used in the calculation of the energies of the giant monopole resonances 

which correspond to the “breathing mode” of the nucleus (Blaizot, 1980). Our nuclear 

Hamiltonian, or the energy density functional does not depend on Skyrme or any other 

NN interaction, but is rather determined by expanding the energy per nucleon of 

nuclear matter around the equilibrium  density by means of Taylor series and  then 

adopting a purely phenomenological approach. In particular, we find that for certain 

class of energy functional, KA depends on the compression modulus K of the infinite 

nuclear matter rather weakly and decreases gradually with increasing K in the range 

100 to 300 MeV and then starts rising slowly. This indeed is a surprising result. Thus 

the relationship between the compressibility and the polarization of the core nucleus 

is not as simple as one might have expected it form the earlier Hartree-Fock studies 

which employ either zero-range Skyrme or finite range effective interactions. In the 

Hartree-Fock scheme  KA is found to be proportional to K (Blaizot, 1980; Blaizot, 

Berger, Dechargé & Girod, 1995) and has a strong dependence on it. We discuss in 

detail the reasons for this paradox by partially emulating finite range as well as the 

zero range Skyrme interactions with in our formalism.  

  

We take into account the differences between the neutron and proton densities 

explicitly arising out of the neutron-proton imbalance and the presence of Coulomb 

forces in nuclei. The nuclei (hypernuclei) considered range from B10 ( B11
Λ ) to Am243  

( Am244
Λ ), a total of 32 nuclei. Our local density approach gives a good description of 

the static properties of nuclei and hypernuclei, such as the binding energies and rms 

radii. The approach uses the variational principle which minimizes the energy of the 

nucleus (hypernucleus) with respect to changes in neutron and proton densities. Thus 
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 7

rms charge radii, nuclear surface diffuseness, total binding energies and other nuclear 

properties are an outcome of the theory.  

  

The energy of the hypernucleus is the sum of the energy of the core nucleus 

and that of the Λ: 

 

][][̂][ 1 ρρρ Λ
−

Λ += EEE AA ,                (1.1) 

 

where ρ is the density of the core nucleus; ][ ρΛE  is the sum of the kinetic and 

potential energies of the Λ moving in the potential generated by the Λ-nuclear 

interactions. ])[]([̂ 11 ρρ EE AA −−  is the energy of the nucleus in the presence (absence) 

of the Λ. The square brackets indicate that the energies are functional of ρ. The 

calculation of ][1 ρEA−  is described in Chapter 2, and that of ][ ρΛE  (with the Λ in  

4≤l states) is described in reference (Usmani & Bodmer, 1999; Usmani, Sami & 

Bodmer, 1992; Usmani, Sami & Bodmer, 1994)  and briefly in Chapter 4. This is 

followed in Chapter 3 by the determination of nuclear parameters. In Chapter 4 we 

also describe the calculation of ][ρEA
Λ  including the polarizing effect of the Λ. 

Chapter 5 presents and discusses our results for the polarizing energy and related 

questions. Chapter 6 is the conclusions of the finding in this research.  
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CHAPTER 2 

FORMULATION 

 

2.1  Thomas Fermi Model of the Nucleus 

 

Our model is phenomenological and generally has been in use for a long time 

(Myers & Swiatecki, 1969; Myers & Swiatecki, 1974; Treiner & Krivine, 1986; 

Dabrowski & Kohler, 1989) for early version and reference (Centelles, Leboeuf, 

Monastra,  Roccia, Schuck & Viñas, 2006; Centelles, Schuck & Viñas, 2007) for 

more recent elaborate versions. For our purposes this model gives a good description 

of nuclei and adequately describes the nuclear response of the Λ. 

  

The energy ][ˆ1 ρEA−  or ][1 ρEA−  is an integral of an energy density which 

accounts for the volume, surface, asymmetry energies plus coulomb and pairing 

terms: 

 

rdaa
mm
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672
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 ,PairingCoulomb ++                (2.1) 

 

where ρn(r) and ρp(r) are respectively the neutron and proton densities, and ρ(r) is the 

total nucleon density; ρ(r) =  ρn(r) +  ρp(r). We ignore shell and deformation effects 

which have little relevance for the present investigation. In expression (2.1), the term 

ε (ρ) represents the equation of state of symmetric nuclear matter, i.e., the binding 
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 9

energy per nucleon as a function of nuclear matter density. The terms ( ) ρρ /2∇  and  

22 /)( ρρ∇ are essential for the surface properties. To a very good approximation 

asym(ρ) can be considered as independent of ρ  (Bombaci & Lombardo, 1991). The 

parameters asym and ρa are determined by fitting A −1E  to the experimental binding 

energies and rms radii of nuclei as described later. For the coulomb energy we use 

 

Coulomb   =   ∫∫ 






−
−

,)(
3

4

3)()(

2

1 3/42
3/1

21
21

212 rdrerdrd
rr

rr
e p

pp rrr
rr

rr

ρ
π

ρρ
            (2.2) 

 

where the second  term on the right hand side is an approximation to the exchange 

part of the coulomb energy. For the pairing term we employ,     

 

Pairing  = 
4/3)(
)1()1(

ZN
a

NZ

pair +
−+−−                 (2.3) 

 

Though, we have included the small pairing energy term, but it is not expected to play 

significant role in the present study. 

 

 For )(ρε  in Equation (2.1) one may utilize a functional from the results of 

nuclear matter calculations using some effective interaction like Skyrme  (Beiner, 

Flocard, Giai & Quentin, 1975) or Gogny (Berger, Girod & Gogny, 1991; 1989) 

types, or the one which imitates a realistic Hamiltonian  (Wiringa, Stoks & Schiavilla, 

1995; Pudliner, Pandharipande, Carlson & Wiringa, 1995; Wiringa, Fiks & 

Fabrochini, 1988; Akmal, Pandharipande & Ravenhall, 1998). However, this ties us 

to a specific form of the interaction. Therefore, in the present study, we adopt a more 
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