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Abstract: This paper presents a comparison between data from single modality and  

fusion methods to classify Tualang honey as pure or adulterated using Linear Discriminant 

Analysis (LDA) and Principal Component Analysis (PCA) statistical classification 

approaches. Ten different brands of certified pure Tualang honey were obtained throughout 

peninsular Malaysia and Sumatera, Indonesia. Various concentrations of two types of  

sugar solution (beet and cane sugar) were used in this investigation to create honey samples 

of 20%, 40%, 60% and 80% adulteration concentrations. Honey data extracted from an 

electronic nose (e-nose) and Fourier Transform Infrared Spectroscopy (FTIR) were gathered, 

analyzed and compared based on fusion methods. Visual observation of classification plots 

revealed that the PCA approach able to distinct pure and adulterated honey samples better 

than the LDA technique. Overall, the validated classification results based on FTIR data 

(88.0%) gave higher classification accuracy than e-nose data (76.5%) using the LDA 

technique. Honey classification based on normalized low-level and intermediate-level FTIR 

and e-nose fusion data scored classification accuracies of 92.2% and 88.7%, respectively 

using the Stepwise LDA method. The results suggested that pure and adulterated honey 

samples were better classified using FTIR and e-nose fusion data than single modality data. 

Keywords: electronic nose; FTIR; honey classification; data fusion; pure honey 

 

OPEN ACCESS 



Sensors 2012, 12 14023 

 

 

1. Introduction 

South East Asia, including Malaysia, is rich in natural forest resources such as honey. Honey is a 

viscous, supersaturated sugar solution derived from nectar gathered and modified by honeybee  

(Apis dorsata). According to the European Union (EU) regulations, the food Codex Alimentarius and 

various other international honey standards, ―honey stipulates a pure product that does not allow for 

the addition of any other substance‖. Currently, there is high market demand on pure honey. This has 

resulted in increased sales of adulterated honey claimed as pure honey by irresponsible parties. Many 

manufacturers have started to add variants of sugar in pure honey so that it has become difficult to 

differentiate pure honey samples from adulterated ones. 

Various analytical procedures can be employed to determine food product authenticity such as 

Liquid Chromatography-Mass Spectrometry (LC-MS), Gas Chromatography-Mass Spectrometry  

(GC-MS), UV-Visible (UV-VIS) Spectrometry, High Performance-Liquid Chromatography (HPLC), 

isotopic analysis and deoxyribonucleic acid (DNA)-based analysis [1–9]. These analytical techniques 

are useful and accurate, but they have drawbacks such as being time-consuming and requiring highly 

skilled operators to perform the corresponding chemical separation processes [10]. 

This paper presents rapid assessment of honey purity using electrical aroma sensors, also known as 

e-noses, and FTIR. An e-Nose uses an association of several sensitive elements on which volatile 

compounds get bonded [11]. The adsorption induces an alteration of the electrical signals of these 

compounds. E-noses have been employed for various purposes such as assessment of melon and 

blueberry maturity [12,13] and sorting of fruits and vegetables according to their variety [14,15]. For 

FTIR, absorption bands in the mid infrared or near infrared range due to molecular vibrations can be 

detected [10]. FTIR has been widely employed for characterization of food products such as for 

assessment of sugar content, and detection of edible oil and apple juice adulteration [16–19]. 

This work presents various classical techniques to detect and discriminate adulteration in honey 

samples. This involves work performed to evaluate the potential of the Principal Component Analysis 

(PCA) features selection technique, and classification of honey using PCA and Linear Discriminant 

Analysis (LDA) methods based on e-nose, FTIR and the fusion of these two datasets. Classification 

accuracies from honey classifiers based on the various datasets have been compared to investigate the 

feasibility of using combined datasets. 

2. Material and Methods 

2.1. Sample Preparation 

Ten different brands of pure Tualang honey were purchased from the local market (three different 

batches of each particular honey). The purity of these honey products were validated using a UV-VIS 

spectrometer to measure the scavenging ability of antioxidants towards the stable 1,1-diphenyl-2-

picrylhydrazyl (DPPH) free radical, as carried out by previous researchers in the literature [20,21]. The 

performed validation test revealed that all the Tualang honey used in this work had DPPH values 

ranging from 32.25% to 73.20%. Previous work by Khalil et al. had reported that the DPPH 

scavenging percentage of various pure Tualang honeys ranged from 35.12% to 75.13% [22]. Hence, 

the DPPH values obtained from the Tualang honey samples used in this work are within the range 
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reported by Khalil et al. This validated that all the honey samples used in this research work could be 

verified as pure.  

In this work, two types of organic sugar solution; beetroot sugar obtained from Grafschafter 

Krautfabrik (Meckenheim, Germany) and cane sugar obtained from Lyle Golden Syrup (Bristol, 

United Kingdom), were used for preparation of adulterated honey samples. Table 1 lists all pure 

honey, sugar samples and adulterated honey used in this experiment with their respective labelling.  

Table 1. Description and abbreviation of honey and sugar samples used in the experiments. 

Product  

Type 

Product 

Name 

Product 

Label 

Label for Honey 

+ Beetroot Sugar (BS) 

Label for Honey 

+ Cane Sugar (CS) 

Pure Honey 

Pure Honey 

Agromas 

As-Shifa 

AG 

AS 

AGBS 

ASBS 

AGCS 

ASCS 

Pure Honey 

Pure Honey 

Pure Honey 

Pure Honey 

Pure Honey 

Pure Honey 

Pure Honey 

Pure Honey 

Pure Sugar 

Pure Sugar 

Syair Timur 

Tayyibah 

Tualang Tiga 

Tualang King 

Tualang TLH 

Tualang N’Apis 

Wild Tualang 

Yubalam Bahtera 

Beetroot Sugar 

Cane Sugar 

ST 

T 

T3 

TK 

TLH 

TN 

WT 

YB 

BS 

CS 

TBS 

TBS 

T3BS 

TKBS 

TLHBS 

TNBS 

WTBS 

YBBS 

- 

- 

TCS 

TCS 

T3CS 

TKCS 

TLHCS 

TNCS 

WTCS 

YBCS 

- 

- 

Three bottles of each pure honey product were purchased. Out of each bottle, three 5 mL samples 

were taken, hence producing nine samples for each honey product. As for adulteration samples, each 

pure honey product was prepared by mixing honey with cane sugar or beetroot sugar in different 

concentrations of 20%, 40%, 60% and 80%, as illustrated in Table 2. Ten samples were produced for 

each concentration of adulteration honey. In total there were 172 samples of pure honey, pure sugar 

and adulterated honey. Each pure and adulterated honey was replicated five times, while pure sugar 

(beetroot and cane sugar) ones were replicated ten times. This was done to verify that all the data were 

from the same product.  

Table 2. Description of mixture for different samples of honey and sugar (BS or CS). 

Label Percentage of Pure Honey 

AG,AS,ST,T,T3,TK,TLH,TN,WT or YB 

BS 

CS 

20BS or 20CS 

40BS or 40CS 

60BS or 60CS 

80BS or 80CS 

100% 

0% 

0% 

80% 

60% 

40% 

20% 
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2.2. Electronic Nose (E-Nose) Measurements  

A number of previous articles had proven that pattern recognition techniques can be useful in 

agricultural applications when e-nose technology is applied [23–26]. In this classification work, a 

Cyrano Sciences Cyranose 320 e-nose was used. It is a portable system from Smith Detection
TM

  

(Pasadena, CA, USA) consisting of 32 individual polymer sensors blended with carbon black 

composite. The polymer sensors are potentiometric sensors configured as an array. They are made up 

of various conducting polymers to sense a variety of vapour mixtures. When the polymer sensors are 

exposed to honey vapour, each sensor absorbs its specialized vapour and swells like a sponge. During 

swelling, the distance between the conductive carbon black particles increases and hence, increasing 

the resistance of the composite [27,28]. This type of e-nose polymer sensor had been employed for 

many applications, including quality control in food industry, plant disease detection and biomedical 

sample discrimination [24,29,30]. 

The e-nose setup used in this work was as illustrated in Figure 1. The filter used was made of 

activated carbon granules and had a large surface area, making it effective in removing a wide range of 

volatile organic compounds and moisture in the ambient air. The setting on the sniffing cycle of the 

Cyranose 320 (C320) as indicated in Table 3. In this work, preliminary experiments were performed to 

determine the optimal experimental setup for the purging, baseline purge and sample draw durations.  

Figure 1. E-nose setup for headspace evaluation of honey, sugar and adulteration sample. 

 

Table 3. E-nose Parameter Setting.  

 Cycle Time (s) Pump Speed 

Sampling Baseline Purge 10 120 mL/min 

Setting Sample Draw 40 120 mL/min 

 Idle Time 3 - 

 Air Intake Purge 40 120 mL/min 

Before measurement is made, each sample was placed in a heating block and heated-up to generate 

sufficient headspace volatiles. The temperature of the sample was controlled at 50 ± 1 °C during the 



Sensors 2012, 12 14026 

 

 

headspace collection. Five mL of each sample was drawn using a syringe and kept in a 13 mm × 100 mm 

test tube sealed with a silicone stopper. When the sensors are exposed to a vapour-phase analyte, the 

sensor matrix will swell and increase in volume causing an increase in resistance because the carbon 

black pathways through the material are broken. The changes in resistance across the array were 

captured as digital patterns, representing test smells. The combination of resistances from all the 

sensors should provide adequate information for the honey adulteration detection task and hence, could 

allow for qualitative and quantitative assessments of complex solutions. 

2.3. Fourier Transform Infrared Spectroscopy Measurement (FTIR) 

FTIR has been used extensively for various applications [31–35]. In this work, FTIR spectral 

measurements were gathered at room temperature of 27 °C using a Perkin Elmer 1600 FTIR 

Spectrometer (Waltham, MA, USA). This FTIR Spectrometer is equipped with a ATR crystal having 

coverage of the 4,000 to 650 cm
−1

 spectral region. The spectral measurements were performed against a 

background baseline of distilled water and presented in total attenuation units. The crystal surface was 

cleaned with distilled water and dried with tissue paper (Kimberly-Clark, Selangor, Malaysia) after the 

measurement of each sample. The background spectrum obtained from the first measurement was 

verified through the spectrum waveform to ensure the surface of the crystal was cleaned and free from 

previous sample residue. Then, a small drop of honey sample was placed on the crystal using a  

syringe and measurements were taken. Each sample was scanned four times and the measurements 

were averaged.  

The spectral data were processed using FTIR spectroscopy spectrum software version 5.0.1 by 

Perkin Elmer for baseline correction, smoothing and normalization. Baseline correction is a process of 

removing background noise by eliminating the dissimilarities between spectra due to shifts in baseline. 

Smoothing is essential to reduce high frequency instrumental noise and enhance information content of 

a spectrum. Normalization of spectra eliminates the path length variation and reduces the differences 

between measurements of a single sample. Usually the spectra are normalized to the most intense band 

or at the same integrated intensity within a given spectral region [36]. 

2.4. Data Analysis 

The following subsections explain the methods of data pre-processing employed prior to 

classification of pure honey. 

2.4.1. Preprocessing of Electronic Nose Data 

E-nose data acquired by the Cyranose 320 is a set of relative changes in the resistances of the 

polymer composites sensors during exposure to the gas of interest. Firstly, all the e-nose data were  

pre-processed automatically in MATLAB using the fractional measurement technique known as baseline 

manipulation. Using this technique, new sets of pre-processed data, Sfrac were obtained based on: 

Sfrac = [St – S0]/S0 (1) 

where S0 is the minimum value taken during baseline purge with ambient air and St is the sensor 

response obtained in a sample draw. As each sensor has large varying levels of response, this equation 
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gives a unit response for each sensor array according to its baseline. Therefore, the effect of 

temperature, humidity and temporal drift could be minimized [11].  

Secondly, the pre-processed data were normalized based on the minimum and maximum values of 

each data using the following equation: 

Snorm = [Sfrac – Smin]/[Smax – Smin] (2) 

Using Equation (2), the data were then bounded within 0 and 1. The purpose of using normalized 

data in this work was to investigate its use in enhancing the classification accuracy of honey detection 

in comparison to using raw data, when various statistical classification methods were employed as the 

classifier.  This comparison is important as classification capability depends on the range of input data 

for input-output mapping task. 

2.4.2. Pre-Processing of FTIR Spectra 

Figure 2(a) to 2(c) show the spectra of different samples used as data for this research work.  

Figure 2(a) presents the ATR spectra for all pure Tualang honey and pure sugar solution (beetroot and 

cane sugar) for the entire spectrum with the corresponding band assignments. There are twelve peaks 

in the plots of each sample data. They show molecular vibration patterns of each honey. As can be 

observed, spectra of pure honey and pure sugar solution show absorbance bands at 776, 923, 1,034, 

1,258, 1,365, 1,414, 2,931, and 3,286 cm
−1

.  

Figure 2. (a) All Pure Tualang honey and sugar solutions for full spectra range (650 cm
−1

 

to 4,000 cm
−1

). (b) All AG honey sample for full spectra range (650 cm
−1

 to 4,000 cm
−1

). 

(c) AG samples for spectra range from 750 cm
−1

 to 1,500 cm
−1

.
 

 

(a) 
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Figure 2. Cont. 

 

(b) 

 

(c) 

Figure 2(b) shows the spectral pattern of all AG honey products, including pure samples and ones 

adulterated with beetroot sugar and cane sugar. A similar spectra pattern as for pure honey and pure 

sugar solutions can be seen for each adulterated honey product. 

Figure 2(c) shows the zoomed-in spectral region between 750 cm
−1

 and 1,500 cm
−1

 for all AG 

samples. This region corresponds to the attenuation or absorption of the three major sugar constituents 

of honey; fructose, glucose and sucrose [37]. The 750 to 900 cm
−1

 region is the anomeric region, 

showing the characteristic saccharide absorptions [37]. The highest peak at 1,034 cm
−1

 is assigned to 

the C-O stretching band. The peak at 1,414 cm
−1

 is assigned to the carbohydrateC-H stretching band. 

According to the data provided in Figure 2(c), the absorbance values for glucose of pure honey, and 

pure beetroot sugar and sugar cane at 1,034 cm
−1

 are about 0.0245, 0.023 and 0.028, respectively. The 

different values suggest the feasibility of honey purity detection. 

Few works have reported on features extraction from FTIR spectra, such as the features wavelength 

method, comparing the standard deviation of samples and the derivative investigation [31–33]. This 
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work aims to adopt a new feature selection approach based on a few methods commonly applied to 

medical data such as corrected peak height, corrected area and area under spectrum [32,33,35,36]. In 

this work, corrected peak height has been proposed as the feature selection technique to identify the 

authenticity of honey. The selection of the features based on the functional class contain in honey 

samples used. Based on the plot in Figure 3, it can be seen that there are five highest peaks with 

absorption values larger than 0.012. Hence, only five obvious peaks as depicted in Figure 3 are used as 

salient features for detection of honey adulteration. The selected features are: 

(i) Corrected peak height at 919 cm
−1

 

(ii) Corrected peak height at 1,031 cm
−1

 

(iii) Corrected peak height at 1,415 cm
−1

 

(iv) Corrected peak height at 2,933 cm
−1

 

(v) Corrected peak height at 3,265 cm
−1

 

Figure 3. All Agromas honey brand sample with the corrected peak height. 

 

2.4.3. Statistical Analysis of Data 

Few articles have reported the success of PCA and LDA techniques at discriminating data into 

appropriate clusters or groups [37–42]. Hence, this work attempts to investigate the potentials of both 

PCA and LDA techniques at classifying pure and adulterated honey. Both approachws were executed 

using MATLAB 7.0. 

PCA is a statistical technique relying on a linear projection of multidimensional data onto 

coordinates based on maximum variance and minimum correlation for feature extraction [23,24,43]. It 

transforms the original set of features into a smaller subset of linear combinations, called principal 

components (PCs) that account for the most variance in the original dataset [44]. Selected PCs are 

normally uncorrelated variables obtained by multiplying the original correlated variables with a  

pre-calculated eigenvector. The eigenvalues of PCs are the measurements of their associated variance. 

The first PC explains the largest percentage of the total variance, usually more than 80%, and so forth. 

A plot of the first two PCs can be used to determine whether distinct data clusters exist for pattern 
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recognition. In this work, the PCA technique was used to pre-process data corresponding to honey 

samples. Then, plots of the first two PCs were observed to determine the existence of distinct clusters 

for the task of classifying pure or adulterated honey. 

LDA is another statistical method used to distinct pure and adulterated honey samples. LDA is a 

study of random variable or random sample emanating from different groups, to allocate a sample of 

unknown origin to an appropriate group [38,39]. It is a supervised exploratory data analysis. It 

transforms the original variables into new variables by deriving linear combinations of independent 

variables that help to discriminate between prior defined groups. The discrimination is accomplished 

by maximizing between-group variances, relative to within-group variance. This way, the 

misclassification error is minimized. In this work, the honey datasets were divided into training and 

validation sets by randomly subdividing the available pattern vectors into two equal sets (i.e., 50% 

training and 50% validation) as done by a previous work [44]. Then, correct classification accuracies 

based on the Direct and Stepwise LDA methods were investigated and compared. In the Direct LDA 

method, all independent variables were considered and analyzed simultaneously. The Stepwise method 

involved variable selection using Wilk’s Lambda. Only the lower values were selected in the equation. 

The selected values were counted for F-statistic whose values must be in the range of the F-to-remove 

and F-to-enter. Following a few research works in literature, the values chosen for F-to-remove and  

F-to-enter were 2.71 and 2.84, respectively [45]. Fisher linear discriminant function and leave-one-out 

were also applied in both analyses.  

2.4.4. Data Outliers 

An outlier is defined as an observation that ―appears‖ to be inconsistent with other observations in 

the data set [46,47]. An outlier originates from the same statistical distribution as the other observation 

in a set of data. Outliers normally occur due to incorrect experimental procedure. Noise in the system 

and drift effects in the experiments are also among the main causes of outliers. If a data value has low 

probability, this indicates bad data. If it can be determined that an outlier point is in fact erroneous, 

then the outlier value should be deleted from the analysis [48]. Results of experiments are expected to 

show some improvement once outliers are removed from the original data. In this work, seven outliers 

were found in the E-nose and FTIR data and hence, these values were removed.  

2.5. Data Fusion 

Data fusion is a technique of combining data from multiple sensors or from different electronic 

systems. In literature, this technique has been shown to be able to simplify interpretation of 

experimental data and improve system performance, compared to using single modality [49–56]. 

Usually, the key to a successful fusion method is dependent upon complementary information 

provided by the additional sensor [57]. 

Fusion methods can be categorized as Low-Level Fusion (LLF), Intermediate-Level Fusion (ILF) 

and High-Level Fusion (HLF). This paper aims to investigate the feasibility of using LLF and ILF for 

detection of honey adulteration. The following subsection discusses about these two fusion techniques. 
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2.5.1. Low-Level Fusion (LLF) 

LLF involves combining two or more sensor outputs to create a single signal. In the literature, this 

fusion level had been successfully used in grading white grapes, discrimination of standard fruit and 

image enhancement [10,50–52]. As this fusion technique does not require different modalities to have 

the same number of features, this work simply concatenated or fused pre-processed data from e-nose 

and FTIR as illustrated in Figure 4. The fusion of FTIR (five features) and e-nose data (32 resistance 

values) gave a total of 37 signals for the honey classification task. 

Figure 4. Low-level fusion scheme. 

 

2.5.2. Intermediate-Level Fusion (ILF) 

ILF, also known as feature-level fusion, first involves feature extraction onto each source of data 

(FTIR and e-nose). Then, ILF is accomplished by a simple concatenation of the feature sets obtained 

from multiple information sources [52–55]. Let FTIR data be X and e-nose data be Y, denoted as 

feature vectors (Xf and Yf) representing the information extracted via two different sources. These 

features are then fused by concatenating them into a single vector for classification task as illustrated 

in Figure 5. 

Figure 5. Intermediate-level or feature-level fusion scheme. 

 

In this work, five salient features from each FTIR dataset were extracted, as explained in  

Section 2.4.2. As for e-nose data, feature extraction based on the PCA technique was performed on 

each set. This resulted in five PCs from each e-nose dataset. Hence, when FTIR and e-nose data were 

fused, a total of 10 features were obtained and used as inputs to the honey classification system. 

Once data had been prepared, classifiers based on LDA were first separately trained with the e-nose 

and FTIR datasets (i.e., without fusion). Then, the third classifier was trained with fusion datasets 

 

Combined 

data based 

on fusion 

[870 × 10]  

FTIR 

[870 × 5] 

 

E-nose 

[870 × 32] 

 

Classification 

RESULT 

 

Features Extraction 

[870 × 5] 

Features Extraction 

[870 × 5] 

 

Combined 

data based 

on fusion 

[870 × 37]  

FTIR 

[870 × 5] 

 

E-nose 

[870 × 32] 

 

Classification 

RESULT 
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using LDA classification method. All the trained classifiers were cross-validated by employing the 

leave-one-out method based on the available data to validate their classification accuracies. These 

procedures were applied on both raw and normalized data to compare the classification accuracies of 

classifiers trained on various datasets. 

3. Results and Discussion 

3.1. E-nose Result 

Figure 6 shows PCA classification results. It can be observed that PCA is less effective at 

discriminating e-nose responses of various honey odours. The data from pure honey seem rather 

properly clustered, but other groups of honey and pure sugar are scattered every where. Therefore, 

PCA has not been able to properly group most types of honey although the total variances for the first 

two principal components are rather high; 99.75% for raw data and 89.12% for normalized data.  

Figure 6. PCA plot of normalized E-nose data. 

 

Figure 7 shows the classification plot of pure honey, adulterated honey and pure sugar based on 

normalized data using LDA as classifier. It can be observed that the groups of pure and adulterated 

honey are distinctly separated, although the groups of adulterated samples are overlapping. This is an 

improvement in classification from the PCA technique.  

Similar behaviour is also observed for honey classification based on raw data. After validation, raw 

data using Stepwise LDA achieved the highest classification accuracy of 76.5%, while normalized data 

achieved a highest accuracy of 74.9% using the Direct LDA method. Based on visual comparison, it 

can be seen that the LDA technique is able to separate the clusters of pure honey, adulterated honey 

and pure sugar solution. Hence, the statistical analysis reveals that LDA is better than PCA at honey 

classification based on e-nose data. A comparison between the use of PCA and LDA showed both 

techniques have about the same execution speed, although PCA is easier to implement than LDA. 
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Figure 7. LDA plot of normalized E-nose data. 

 

3.2. FTIR Result 

Figure 8 shows the PCA plots of normalized FTIR data. For FTIR data, the first two principal 

components of FTIR data accounted for 90.12% of the variance for raw data and 94.44% of the 

variance for normalized data. It can be observed that although the variance values are high and the 

groups are in clear sequence, they have not been well-clustered into adulterated and pure honey. This 

suggests that PCA technique has not been able to differentiate between adulterated and pure honey.  

Figure 8. PCA plot of normalized FTIR data. 

 

Figure 9 shows the performance of LDA classification of pure honey, adulterated honey and pure 

sugar solutions based on normalized FTIR data. The LDA technique has been able to separate different 

groups of honey in sequence, with slight overlapping. Classification based on normalized FTIR data 

gives lower accuracy of 68.4% compared to the raw data with 88.0% classification accuracy. This is 

due to slight overlapping between pure honey and 80% adulterated honey results. Overall, the 
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supervised LDA technique shows better classification for both raw and normalized data in comparison 

to the PCA technique.  

Figure 9. LDA plot of normalized FTIR data. 

 

3.3. Low-Level Fusion (LLF) Result 

As the previous work stages has revealed that LDA method is more robust than PCA at 

classification of adulterated and pure honey, our subsequent investigation based on fused data only 

focused on the LDA method. Figure 10 shows the plot of normalized data (e-nose and FTIR data) with 

classification score of 92.2% using the Stepwise LDA method. It can be seen from the figure that using 

normalized fusion data, pure and adulterated honey groups are clearly separated. Similar behavior is 

also observed with raw data, but only 91.7% of correct classification is achieved. This suggests that 

higher classification accuracy can be obtained using normalized LLF data. 

Figure 10. LDA plot of LLF normalized data (e-nose and FTIR). 

 

3.4. Intermediate-Level Fusion (ILF) 

The result for honey classification using the normalized ILF data is as depicted in Figure 11. It can 

be observed from the figure that the main aim of classifying pure and adulterated honey is clearly 
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accomplished as these two groups are distinctively separated. Classification based on the normalized 

ILF data gave a correct classification of 88.7%. This is obtained based on the Stepwise LDA method. 

Figure 11. LDA plot of ILF norm data. 

 

The results of classification based on raw ILF data also show that all the various types of honey 

have been grouped in sequence according to the types of honey purity with a little overlapping. With 

classification based on raw ILF data, the highest accuracy of 88.2% was obtained using the Stepwise 

LDA method. Therefore, it can be concluded that classification based on normalized ILF data is able to 

give higher accuracy than classification based on raw ILF data. 

Overall, the results of pure or adulterated honey classification using e-nose, FTIR, LLF and ILF 

datasets revealed that the LDA method gave higher accuracy than PCA. As already explained, two 

LDA techniques—Direct and Stepwise—were used. Table 4 summarizes all LDA classification results 

for the training and validation data based on both, raw and normalized data (indicated as Norm Data in 

the table) for the Direct and Stepwise (after Wilk’s lambda) LDA techniques. The highest accuracy 

values for each type of dataset are bold. Based on the validation accuracies, the classification results 

showed an improvement when the data of e-nose and FTIR were fused or combined using the LLF 

method. This is because fusion of both sensor features provides more salient information that further 

contributes towards better classification performances. Further comparison between LLF and ILF 

honey classifiers show that classifier based on LLF data is able to give higher accuracy than the  

ILF classifier. 

Table 4. Summary of LDA classification results. 

Modality 

Accuracy of Training Data (%)  Accuracy of Validation Data (%) 

Raw Data Norm Data  Raw Data Norm Data 

Direct Stepwise Direct Stepwise  Direct Stepwise Direct Stepwise 

E-Nose 73.0 72.8 69.1 70.3  74.9 76.5 74.9 71.9 

FTIR 91.7 91.9 79.5 79.5  88.0 87.5 68.4 64.1 

LLF 92.6 93.1 91.2 91.2  91.7 90.3 90.3 92.2 

ILF 80.2 81.1 87.0 87.0  81.8 88.2 81.6 88.7 
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4. Conclusions 

In this research work, the classification performance of single modality based on either e-nose or 

FTIR data, and a method of fusion of e-nose and FTIR data at classifying honey (either pure or 

adulterated) was investigated. Five selected peaks in the FTIR spectra and thirty-two resistance values 

obtained from the e-nose system were used. The PCA was used as a data pre-processing method as 

well as a classifier, in comparison to the LDA method, focusing on the Direct and Stepwise techniques.  

Overall analysis showed that LDA method was able to distinctively group the various honey 

samples better than the PCA technique. Honey classification using FTIR data gave higher accuracy 

than classification using e-nose data based on the LDA technique. Nonetheless, higher classification 

accuracies had been achieved using low-level and intermediate-level fusion methods compared to 

using any of the single modality data. Further investigation revealed that honey classifier based on LLF 

data was able to give higher classification accuracy than honey classifier based on ILF data. The results 

also showed that Stepwise LDA method gave higher classification accuracy than the Direct LDA method 

for fusion data. In summary, the work had shown the superior potential of fusion methods to assist 

human panels in classifying pure and adulterated honey. In the future, high-level fusion methods could 

be investigated as a comparison to LLF and ILF techniques in the classification of honey. 
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