THE STUDY OF VOLTAGE-CURRENT (V-I) CHARACTERISTIC OF LIGHTNING IMPULSE TO THE MODELLING OF METAL-OXIDE VARISTOR HC (MOV)

LIM HOOI HOON LIM HOOI HOON CF SCHOOL OF ELECTRICAL SYSTEMS ENGINEERING UNIVERSITY MALAYSIA PERLIS 2011

ACKNOWLEDGEMENT

In the very first place, I would like to express my thankfulness to God Almighty for gifting me His guidance and abundant grace throughout the high and low of this study. In addition, I heartily thank and appreciate helps from my supervisor, En. Azralmukmin B. Azmi, who never hesitated to offer consultation and advice along the study. With his appreciable care and support, it truly helps the smoothness of progression throughout this project. Besides that, to my friends who always stand side by side to motivate, encourage and support me in every place, here goes my deepest appreciation to you. Not to forgot, to whose has supported and helped me in completing my thesis from time to time, the co-operation is much indeed appreciated.

Last but not least, special gratitude and appreciation to my family members, whose share loves, supports and encouragement has inspired me.

Truly from my bottom heart, thank you.

I hereby declare that my Final Year Project Thesis is the result of my research work under supervision of Mr. Azralmukmin B. Azmi. All literature sources used for the writing of this thesis have been adequately referenced.

Name Candidate number Supervisor Title of thesis

othistemist

: LIM HOOI HOON : 071090325 : Mr. Azrałmukmin B. Azmi : THE STUDY OF VOLTAGE-CURRENT (V-I) CHARACTERISTIC OF LIGHNING IMPULSE TO THE MODELING OF METEAL-OXIDE VARISTOR (MOV)

Candidate's signature:	Supervisor signature:
Date:	Date:

APPROVAL AND DECLARATION SHEET

This project report titled The Study of Voltage-Current Characteristic of Lightning Impulse to the Metal-Oxide Varistor was prepared and submitted by LIM HOOI HOON (Matrix Number: 071090325) and has been found satisfactory in terms of scope, quality and presentation as partial fulfillment of the requirement Er cot otiothal otiothal for the Bachelor of Engineering (Electrical Systems Engineering) in Universiti Malaysia Perlis (UniMAP).

o this tem is protect (Mr. Azralmukmin B. Azmi) **Project Supervisor**

Checked and Approved by

School of Electrical Systems Engineering University Malaysia Perlis

March 2011

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENT	II
APPROVAL AND DECLARATION SHEET	III
TABLE OF CONTENTS	IV
LIST OF TABLES	VII
LIST OF FIGURES	VIII
LIST OF SYMBOLS, ABBREVIATIONSOR NOMENCLATURE	XI
ABSTRAK	XII
ABSTRACT	XIII
CHAPTER 1: INTRODUCTION	
1.1 Background History	1-2

1.2	Problem Statement	2
1.3	Objective	2-3
1.4	Scope of Study	3
1.5	Outline	3-4
Y		

CHAPTER 2: LITERATURE REVIEW

 \bigcirc

2.1	Lightı	Lightning 5		
	2.1.1	Thunderstorm Day	7-9	
	2.1.2	Standard Lightning Impulse	10-11	
2.2	2 Surge Protective Device (SPD)		11-12	
	2.2.1	Metal-Oxide Varistor MOV as SPD	13-14	
	2.2.2	Microstructure of MOV	15-17	
	2.2.3	Operation of MOV	17	
	2.2.4	Electrical Characteristic of MOV	18	

	2.2.5 Equivalent Circuit of MOV	19-21
2.3	Powersim (PSIM)	21

CHAPTER 3: METHODOLOGY

3.1	Introduction		
3.2	Flow Chart	22-23	
3.3	Circuit of Standard Impulse Current	24-27	
3.4	Modeling of MOV	27-29	
	3.4.1 Non-linear element	29-30	
	3.4.2 Lead Inductance	31-33	
	3.4.3 Capacitance	33	
	3.4.4 R_ON and R_OFF	34	
3.5	Parameter Sweep	35-36	
3.6	Impulse Current Test	36-37	
	xed		

CHAPTER 4: RESULTS AND DISCUSSION

4.1	Introduction		38
4.2	Wavef	form of Standard Lightning Impulse Current	38-39
4.3	Parameter Sweep		
4.3.1 Non-Li		Non-Linear Element	39-40
	4.3.2	Non-Linear Element with Inductor	40-41
	4.3.3	Non-Linear Element with Capacitor	41-42
\bigcirc	4.3.4	Non-Linear Element with R _{ON}	42-43
	4.3.5	Non-Linear Element with R_OFF	43-44
	4.3.6	Complete Model of MOV	44-45
4.4 Impulse Current Test		se Current Test	
	4.4.1	Non-Linear Element	45-46
	4.4.2	Non-Linear Element with Inductor	47-48
	4.4.3	Non-Linear Element with Capacitor	48-49
	4.4.4	Non-Linear Element with R _{ON}	49-50
	4.4.5	Non-Linear Element with R_OFF	50-51
	4.4.6	Complete Model of MOV	51-52

CHAPTER 5: CONCLUSION and RECOMMENDATION

5.1	Summary	54-55
5.2	Recommendation for Future Research	55
5.3	Commercialization Potential	55-56
REF	ERENCES right copylic	57-58
	orotectedbyor	
	its tem is t	
\bigcirc		

52-53

LIST OF TABLES

Table	Tables No.		
2.1	Typical values of dimensions of LittleFuse Varistor	16	
3.1	Data of single MOV	32	
3.2	Capacitance of MOV	33	
	tem is protected by original		

LIST OF FIGURES

Figu	res No.	Page
2.1	Categorization of the four types of negative cloud-to-ground	6
	(1) positive downward lightning, (2) positive upward lightning,	
	(3) negative downward lightning and (4) negative upward lightning	
2.2	Frequencies of thunderstorm activities around the world	7
2.3	Annual thunderstorm days in Peninsula Malaysia	8
2.4	Annual thunderstorm days in East Malaysia	9
2.5	Standard lightning impulse waveform	10
2.6	Impulse Current Waveform	11
2.7	Surge protective device system	12
2.8	MOV has very high impedance in normal operating voltage	13
2.9	Metal-oxide variator MOV is in low resistance when surge	14
	or transient occur	
2.10	Microstructure of metal-oxide varistor MOV	15
2.11	Typical voltage-current characteristic of MOV on log-log scale	18
2.12	Equivalent circuit of MOV	19
2.13	Equivalent circuit at low voltage	19
(2.14)	Equivalent circuit at varistor conduction	20
2.15	Equivalent circuit at the upturn region	21
3.1	Process flow of the project	23
3.2	Basic circuit of an impulse current generator	24
3.3	Equivalent circuit of 8/20µs impulse current	27
3.4	Outline of MOV	28
3.5	Equivalent circuit of MOV	28
3.6	Transient voltage-current characteristic of MOV	29
3.7	Non-linear element of MOV	30
3.8	Waveform of single non-linear element	32

	3.9	Equivalent circuit of non-linear element with inductor	33
	3.10	Equivalent circuit of non-linear element with capacitor	33
	3.11	Equivalent circuit of non-linear element with R_ON	34
	3.12	Equivalent circuit of non-linear element with R_OFF	34
	3.13	Basic circuit of parameter sweep test	35
	3.14	Basic circuit of impulse current test	36
	4.1	Waveform of standard lightning impulse current	39
	4.2	Graph of non-linear element connected in single, parallel and series	40
	4.3	Graphs of non-linear element is connected in series with inductors	41
	4.4	Graph of non-linear element connected in parallel with capacitors	42
	4.5	Graph of non-linear element is connected in series with R_{-ON}	43
	4.6	Graph of non-linear element connected in parallel with R_OFF	44
	4.7	Graph of complete model of MOV	45
	4.8	Combined graph of non-linear element connected in single,	46
		parallel and series	
	4.9	Combined graph of non-linear element connected in series with	48
		inductor.	
	4.10	Combined graph of non-linear element connected in parallel with	49
		Capacitors	
	4.11	Combined graph of non-linear element connected in series with	50
		R_ON	
	4.12	Combined graph of non-linear element connected in parallel with	51
		R_OFF	
(1	4.13	Combined graph of impulse test on complete model of MOV	52
)		

LIST OF SYMBOLS, ABBREVIATIONS OR NOMENCLATURE

SPD	Surge Protective Device
MOV	Metal-Oxide Varistor
V-I	Voltage-Current
PSIM	Powersim
MDF	Magnetic Direction Finding
TOA	Time-of-Arrival
VDR	Voltage Dependent Resistor
ZnO	Zinc Oxide
R	Resistor
L	Inductor
С	Capacitor X
V	Volt
А	Ampere
Ω	Ohm
Н	Henry
F	Farad
μ	micro
m	mili
М	Mega
S	Second

Kajian Atas Varistor Logam Oksida (MOV) Terhadap Gelombang Dedenyut

ABSTRAK

Projek ini adalah kajian ke atas varistor logam oksida (MOV) terhadap gelombang dedenyut untuk mengkaji ciri-ciri voltan-arus oleh MOV. MOV banyak digunakan dalam peralatan voltan rendah untuk perlindungan daripada gelombang dedenyut yang sentiasa berlaku semasa petir dan mengalir dalam saluran penghantaran ke peralatan voltan rendah. Dalam projek ini, gelombang dedenyut arus digunakan untuk menguji kemampuan MOV dengan arus yang besar. Selain itu, MOV daripada pengilang 'Littlefuse' telah dipilih. Untuk menjayakan projek ini, kajian atas gelombang dedenyut arus dan ciri-ciri voltan arus bagi MOV adalah penting. Di samping itu, perisian PSIM telah digunakan dalam pemodelan dan ujian. Dari hasil simulasi, bandingan atas ciri-ciri voltan-arus bagi MOV dapat diperolehi.

The Study of Voltage-Current (V-I) Characteristic of Lightning Impulse to the Metal-Oxide Varistor (MOV)

ABSTRACT

This project studies the voltage-current (V-I) characteristic of lightning impulse to the metal-oxide varistor (MOV). MOV is widely used in the low voltage equipment for protection from lightning surge. This surge, produce an extra current which will propagates from transmission line along to the low voltage equipment. From this project, lightning impulse current is injected to the designed modelling of MOV to test its capability to withstand the surge current. In this project, MOV of manufacturer 'Littlefuse' is selected. In order to familiar with the project, study on behaviour of lightning impulse and V-I characteristic of MOV is vital. Powersim (PSIM) software has been used in modelling and testing. From the simulation, comparison of V-I characteristic is obtained Onthis item is protected by original copyright