DYNAMIC BEHAVIOR OF A PLANAR FLEXIBLE SLIDER CRANK MECHANISM WITH DIFFERENCE by or isonal convites by or isonal convites dby IN BINT

NURAIN BINTI ALIAS Report submitted in partial fulfillment

APRIL 2009

ACKNOWLEDGEMENT

Alhamdulillah, I would like to express my grateful to Allah S.W.T. for giving me a good verve along this final year project. I also like to thanks to my family for giving me such off believe and support.

I would like to deliver my sincere thankful to all the classmate whom are very kind, helpful and conductive. Here by, highest respect and adoration special dedicated to my supervisor, Hafizawati binti Zakaria for teaching, leading, conducting, performing the excellent guidance along doing research final year project.

I would like to deliver my sincere thankful to Intan Maisara binti Abd Rahim and Mohamad Sulaiman Ibrahim, my companion struggle with writer in diligence to finishing this final year project for degree mechanical.

May it be all helped that give will blessing by Yang Maha Esa To want, Amin.

APPROVAL AND DECLARATION SHEET

This project report titled Dynamic Behavior Of A Planar Flexible Slider Crank mechanism with difference length was prepared and submitted by Nurain binti alias (Matrix Number: 061110873) and has been found satisfactory in terms of scope, quality and presentation as partial fulfillment of the requirement for the Bachelor of Engineering (Mechanical Engineering) in Universiti Malaysia Perlis (UniMAP).

Checked and Approved by (HAFIZAWATI BINTI ZAKARIA)

School of Microelectronic Engineering Universiti Malaysia Perlis

April 2009

DINAMIK KETELENTURAN SATAH MEKANISMA GELANGSAR ENGKOL

ABSTRAK

copyright

Projek ini adalah untuk mengkaji dan memahami kelemahan dinamik kelenturan satah mekanisma gelangsar engkol merujuk kepada perbezaan panjang engkol. Kaedah simulasi digunakan mengkaji kelenturan engkol. Bagi ujian simulasi, model engkol dilukis mengunakan perisian ADAMs dan SOLIDWORKs. Untuk melengkapkan model engkol ini, penghubung yang digunakan adalah model berdasarkan kepada fungsi hentakan. Ciriciri gerakan satah mekanisma gelangsar engkol adalah berdasarkan kepada tiga fasa iaitu gerakan bebas, penghubung gerakan berterusan dan gerakan hentakan. Dalam laporan ini, masalah bagi satah mekanisma gelangsar engkol iaitu dengan kakuan penghubung dan masalah kelenturan kakuan telah dikenalpasti dan dikaji. Daripada analisis yang dibuat didapati apabila ukuran panjang mekanisma gelangsar engkol bertambah maka kelajuan dan pecutan engkol adalah berkurang.

DYNAMIC BEHAVIOR OF A PLANAR FLEXIBLE SLID CRANK MECHANISM

ABSTRACT

copyright

This project is the study and understand of the dynamic behavior of a planar flexible slider–crank mechanism with different lengths. The simulation to used in study of the planar flexible slider–crank mechanism. For the simulation tests, we have built the model under the software ADAMS and Solidworks. We used a contact model based on the so called Impact-function. The motion is characterized by the occurrence of three phases: a free motion, a continuous contact motion and an impact motion. In this paper, the problem of the mechanism with rigid link and the case with flexible link were is detected and study studied. It is shown that when the slider crank lengths increase the velocity and acceleration is decrease.

TABLE OF CONTENT

	lages
ACKNOWLEDMENT	i
APPROVAL AND DECLARATION SHEET	ii
ABSTRAK	iii
ABSTRACT	iv
TABLE OF CONTENTS	v
LIST OF TABLES	vii
LIST OF FIGURES	ix
LIST OF SYMBOLS, ABBREVIATIONS OR NOMENCLATURE	xi

LIST OF SYMBOLS, ABBREVIATIONS OR NOMENCLATURE	X
CHAPTER 1: INTRODUCTION	
1.1 Dynamic Behavior of a Planar Flexible Slider Crank Mechanism.	1
1.2 Management Research Principle K-Flow Chart 1.2 D	4
1.3 Problem Statement	5
1.4 Objective1.5 Scope Of Project	6 6
	0 7
1.6 Methodology The Motion Analysis	/

CHAPTER 2: LITERATURE

2.1	Introduction.	9
2.2	2 Mechanism	
2.3	Law of motion	
	2.3.1 Newton's Laws of Motion	13
	2.3.2 The second law of motion	13

	2.3	Revolute Joint With Clearance	14
	2.4	Flexible Slider Crank Mechanism	17
	2.5	Effect of Crank Length	18
			,
	СНА	PTER 3: METHODOLOGY	
	3.1	Introduction	21
	3.2	ADAMs Software	23
		3.2.1 ADAMs Benefits	25
		3.2.2 ADAMs Applications	26
	3.3	The Model and Description Part	31
		PTER 3: METHODOLOGY Introduction ADAMs Software 3.2.1 ADAMs Benefits 3.2.2 ADAMs Applications The Model and Description Part PTER 4: ANALYSIS Introduction The Velocity Acceleration	
	СНА	PTER 4: ANALYSIS	
	4.1	Introduction	33
	4.2	The Velocity	33
	4.3	Acceleration	43
	4.4	The Force	51
	4.5	Stress	54
	4.6	Natural frequency	56
	• (
	\sim	x [×]	
	СНА	PTER 5: CONCLUSION	
\bigcirc	5.1	Summary	57

5.1	Summary	57
5.2	Recommendation For Future Project	58
5.3	Commercialization Potential	58

REFFERENCE APPENDICES

59

LIST OF TABLE

	witcht)
Table No.	62	Page
2.1	The model slider-crank mechanism and the description.	10
3.1	Model and description the part.	31
4.1	The slider crank mechanism by part are the velocity for 160.36mm steel material	36
4.2	The slider crank mechanism by part are the velocity for 160.36mm cast iron material	36
4.3	The slider crank mechanism by part are the velocity for 170.36mm steel material	37
4.4	The slider crank mechanism by part are the velocity for 170.36mm cast iron material	38
4.5	The slider crank mechanism by part are the velocity for 190.36mm steel material	39
4.6	The slider crank mechanism by part are the velocity for 190.36mm cast iron material	40
4.7	The slider crank mechanism by part are the acceleration for 160.36.mm steel material	44
4.8	The slider crank mechanism by part are the acceleration for 160.36.mm cast iron material	45
4.9	The slider crank mechanism by part are the acceleration for 170.36.mm steel material	46

4.10	The slider crank mechanism by part are the acceleration for 170.36.mm cast iron material	47
4.11	The slider crank mechanism by part are the acceleration for 190.36.mm steel material	48
4.12	The slider crank mechanism by part are the acceleration for 190.36.mm cast iron material	49
4.13	The slider crank mechanism by joint are the force for 160.36. mm	52
4.14	The slider crank mechanism by joint are the force for 170.36.mm	53
4.15	The slider crank mechanism by joint are the force for 190.36.mm	53
orthiste	the force for 190.36.mm	

LIST OF FIGURE

	Figure 1.1	Slider crank mechanism model and major engine	Page 2
	1.2	Principal parts of slider-crank mechanism	2
	1.3	Management research principle and connection literature, K- Flowchart.	4
	1.4	The motion analysis assembling sudsystem model	7
	2.1	The type of revolute clearance joint	14
	3.1	Flow chart methodology	22
	3.2	The software analysis	23
	3.3	General process simulation	24
	3.4	The view interface	26
	3.5	The procedures create link or part	27
•	3.6	The procedures create link or part	27
X	3.7	The suitable joint to used	28
~	3.8	The simulation control	29
	3.9	The adams/ Postprocessor	29
	3.10	The model to study	31
	4.1	comparison graph difference length slider crank mechanism steel material	41
	4.2	The comparison direction velocity	42

K

4.3	The comparison connecting rod at velocity	42
4.4	The comparison graph acceleration difference length slider crank mechanism	50
4.5	The comparison between three model.(connecting rod 160.36mm,170.36mm and 190.36mm)	51
4.6	The graph are joint with element force	52
4.7	The location aspect high stress	54
4.8	The effective stress at crank part	55
othiste	The comparison between three model.(connecting rod 160.36mm,170.36mm and 190.36mm) The graph are joint with element force The location aspect high stress The effective stress at crank part Oricitation Computer	

LIST OF SYMBOLS, ABBREVIATIONS OR NOMENCLATURE

- F the mutual gravitational force exerted , one on the other.
- m The mass of bodies .
- a The acceleration of a particle .
- σ Uniaxial stress
- ωn The natural frequency
- τ The time period of the system, τ_d
- K The stiffness coefficient