ELECTRICAL ENERGY GENERATION FROM PIEZOELECTRIC MATERIALS

SCHOOL OF ELECTRICAL SYSTEMS ENGINEERING UNIVERSITY MALAYSIA PERLIS 2011

ELECTRICAL ENERGY GENERATION FROM PIEZOELECTRIC MATERIALS

by hereiten LAU LEE TAK hereiten hereiten

MAY 2011

ACKNOWLEDGEMENT

Gratefully, at last I am able to complete this final year project (FYP) successfully in the schedule time. The completion of this project is not possible without the technical support and aid from other parties. In this short column, I would like to express my sincere gratitude to my supervisor, Prof. Madya Dr. Siti Fatimah Siraj and co-supervisor, Puan Nor Hanisah Baharudin from School of Electrical Systems Engineering for their knowledgeable advices, patience and guidance.

I want to thank to my family for their love, morale and financial support, encouragement, education and prayer. Their support has given me spiritual strength and inspiration in pursuing my ambition in life as well as to complete this project.

Finally, I would like to give my thanks to my fellow friends and laboratories assistants for their constructive idea, and technical support at the beginning stages of my project.

DECLARATION SHEET

I hereby declare that my Final Year Project Thesis is the result of my research work under supervision of Prof. Madya Dr. Siti Fatimah Siraj. All literature sources used for the writing of this thesis have been adequately referenced.

Name	: LAU LEE TAK
Candidate number	: 071090295
Supervisor	: PROF. MADYA DR. SITI FATIMAH SIRAJ
Title of thesis	: ELECTRICAL ENERGY GENERATION FROM
This	PIEZOELECTRIC MATERIALS

Candidate's signature:	Supervisor signature:
Date:	Date:

APPROVAL AND DECLARATION SHEET

This project report titled Electrical Energy Generation from Piezoelectric Materials was prepared and submitted by Lau Lee Tak (Matrix Number: 071090295) and has been found satisfactory in terms of scope, quality and presentation as partial fulfillment of the requirement for the Bachelor of Engineering (Electrical Systems Engineering) in University Malaysia Perlis (UniMAP).

Checked and Approved by Checked and Approved by this term is protection (Prof byotis (Prof. Madya Dr. Siti Fatimah Siraj)

School of Electrical System Engineering

Universiti Malaysia Perlis

May 2011

PENJANAAN TENAGA ELEKTRIK DARI BAHAN

PIEZOELEKTRIK

ted by original copyright original copyright ab untuk Tujuan dari projek ini adalah untuk menuai tenaga elektrik dari struktur yang bergetar dengan menggunakan bahan piezoelektrik. Definisi dibangunkan, model teoritis untuk memprediksi voltan yang dihasilkan dari bahan piezoelektrik bergetar menempel pada angka tahap kanti. Model ramalan diaktifkan dengan membandingkannya dengan data eksperimen. Keputusan kajian menunjukkan bahawa model Euler-Bernoulli mewakili bahan piezoelektrik. Selain itu, pengoptimuman parametrik untuk kemampuan generasi sistem angka kantilever kuasa dibahas. Alternatif voltan yang dihasilkan oleh bahan piezoelektrik diperbaiki dan kemudian disimpankan di dalam bateri nickel metal hydride. Projek ini membuktikan bahawa kuasa yang kecil dihasil dari bahan piezoelectric adalah wujud dan ini memberikan alternatif baru di loji tenaga elektrik.

ELECTRICAL ENERGY GENERATION FROM PIEZOELECTRIC

MATERIALS

ABTRACT ABTRACT Original convitability original convitability betty harvest electrical energy f

The goal of this project is to harvest electrical energy from vibrating structures by using the piezoelectric materials. Definitive is developed, theoretical models to predict the output voltage which is generated from vibrating piezoelectric materials attached to a cantilever beam. The predictive models are validated by comparing them to experimental data. The results show that the Euler-Bernoulli model must appropriately represent the piezoelectric material. Besides, parametric optimization for the cantilever beam system's power generation capability is discussed. The alternating voltage generated by the piezoelectric material is rectified and then stored in a nickel metal hydride battery. The project proves that small power harvesting from piezoelectric materials is possible and this provides a new alternative in electrical energy generation.

TABLE OF CONTENTS

itajit	
ACKOWLEDGEMENT DECLARATION SHEET	PAGE
ACKOWLEDGEMENT	i
DECLARATION SHEET	ii
APPROVAL AND DECLARATION SHEET	iii
ABSTRAK	iv
ABTRACT	v
TABLE OF CONTENTS	vi
LIST OF TABLES	ix
LIST OF FIGURES	x
LIST OF SYMBOLS AND ABBREVIATIONS	xii

CHAPTER 1 INTRODUCTION11.1Background11.2Objective of Project2

1.3	Scopes of Works	2
1.4	Thesis Structure	3

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction	4
2.2	Piezo-Based Power Generation	4
2.3	Piezo-Based Power Generation Applications	7
2.4	Non-Piezo-Based Power Generation	8
2.5	Modeling of Piezoelectric on Beams	9
2.6	Summary	10

4

	n de la companya de la				
	ted ,				
CHA	CHAPTER 3 METHODOLOGY 11				
3.1	Introduction	11			
3.2	Modeling of a Piezoelectric Bender Sensor	12			
	3.2.1 Background	13			
	3.2.2 PZT Bender Sensors	14			
3.3	Mathematical Modeling of a Unimorph Beam Sensor	17			
	3.3.1 Modeling the PZT Sensor using the Pin-Force Method	17			
	3.3.2 Modeling the PZT Sensor using the Euler-Bernoulli Method	21			
3.4	Analytical Power Estimation	23			
	3.4.1 Analytical Power Estimation: Cantilever Beam Model	23			
3.5	Electric Energy Harvesting Circuit	27			

CHAPTER 4 RESULTS AND DISCUSSIONS			
4.1 II	ntroduction	29	
4.2 E	Experimental Procedure	29	
4.3 P	Parametric Optimization	30	
4	.3.1 Forcing Location on the Beam	31	
4.4 C	Cantilever Beam Experiment and Comparison	33	
4.5 H	Iarvesting Electrical Energy from the PZT Sensor	34	
СНАРТ	ER 5 CONCLUSIONS AND RECOMMENDATIONS	36	
5.1 C	Conclusions	36	
5.2 R	Recommendations for Future Work	37	
REFER	ER 5 CONCLUSIONS AND RECOMMENDATIONS	38	
APPENI	DICES		
Appendi	x A Mathematic Program for Theoretical Model for Beam	41	
Appendi	x B Diagrams of Testing on Electronic Components	42	
Appendi	Appendix C Layout of the Battery Charging Circuit 4		

LIST OF TABLES

	it of the	
Table No.	a copyright	Page
3.1	Dimensions and properties of the beam and PZT.	24
4.1 ©	Measurement of voltage output from battery for every 5 minutes.	35

LIST OF FIGURES

	ALT ON	
Figures No.	Flow chart of the project.	Page
3.1	Flow chart of the project.	12
3.2	Piezoelectric elementary cells (1) before poling (2) after poling.	14
3.3	Electric dipoles in Weiss domains: (1) unpoled ferroelectric ceramic, 2) during and (3) after poling (piezoelectric ceramic).	15
3.4	Orthogonal coordinate system and poling direction that is used in this thesis.	16
3.5	Pin-force model of unimorph PZT and substrate.	18
3.6	Notation of moments.	18

3.7	Euler-Bernoulli model of PZT and substrate along with the modulus-weighted neutral axis.	21
3.8	Setup of cantilever beam model.	23
3.9	The voltage calculated from theoretical models.	27
3.10	Schematic of the electric energy harvesting circuit.	28
4.1	Experimental setup to examine the voltage output from	
	piezoelectric transducer.	30
4.2	Setup of PZT and beam for a study to optimize forcing location.	31
4.3	The force located at 0.20 <i>m</i> away from the clamped end of the beam.	32
4.4	The force located at $0.15m$ away from the clamped end of the	
	beam.	32
4.5	The force located at $0.10m$ away from the clamped end of the	
	beam.	33
4.6	The experimental voltage compared with two different	
	theoretical voltages.	34

4.7 Charging a 1.2V-2000mAh nickel metal hydride battery within 60 minutes.

Onthis item is protected by original copyright

LIST OF SYMBOLS AND ABBREVIATIONS

		Mechanical Strain Mechanical Stress Electrical Field Electric Density Elastic Compliance
		office and the
ε		Mechanical Strain
σ		Mechanical Stress
Ε		Electrical Field
D		Electric Density
S		Elastic Compliance
d		Piezoelectric Strain Coefficient
εα		PZT strain
σ_a		PZT stress
F		Force
I_b	Ŕ	Moment area of inertia of the beam
$g_{_{31}}$	© '	PZT voltage constant
Ø		Phi
М		Moment of the beam
b		Width of PZT
t _a		PZT thickness
t_b		Beam thickness
E_a		PZT young modulus
E_b		Beam young modulus

- *k* Curvature of the beam
- *ρ* Destiny of the aluminum beam
- A Cross-sectional area
- *ω* Driving frequency

onthis item is protected by original convitable