CHARACTERISTICS OF VOLTAGE SAGS IN POWER SYSTEMS

MOHD FAIZAL BIN AMRIL

A FAIZA SCHOOL OF ELECTRICAL SYSTEM **ENGINEERING UNIVERSITI MALAYSIA PERLIS** 2011

ACKNOWLEDGMENT

I would like to express my gratitude to Allah S.W.T for giving me the opportunity to complete this project.

I also wish to express my appreciation to all those who had been willing to support me throughout the progress of this project. I would like to express my gratitude to my supervisor, Ir. Surya Hardi for all the advices and guides given towards the successful completion of this project.

Also not to forget, my utmost thanks to my family, friends and each of those, whom without them, this project would not be probably at its form.

May God bless you all until the end of time. Wassalam and thank you.

Thistem

APPROVAL AND DECLARATION SHEET

This project report titled Tunneling Characteristic of Voltage Sag in Power System was prepared and submitted by Mohd Faizal bin Amril (Matrix Number: 081090459) and has been found satisfactory in terms of scope, quality and presentation as partial fulfillment of the requirement for the Bachelor of Engineering (Electrical System) in Universiti Malaysia Perlis (UniMAP).

Checked and Approved by Checked and Approved by Checked and Approved by (IR. SURYA HARDI AMRIN) Project Supervisor

School of Microelectronic Engineering Universiti Malaysia Perlis

MAY 2011

DECLARATION SHEET

I hereby declare that my Final Year Project Thesis is the result of my research work under supervision of Ir. Surya Hardi Amrin. All literature sources used for the writing of this thesis have been adequately referenced.

Name Candidate number Supervisor Title of thesis : MOHD FAIZAL BIN AMRIL : 081090459 : IR. SURYA HARDI AMRIN : CHARACTERISTICS OF VOLTAGE SAGS IN POWER SYSTEMS

Candidate's signature:	Supervisor signature:
Date:	Date:

CIRI-CIRI VOLTAN LENDUT PADA SISTEM KUASA

ABSTRAK

Kejatuhan voltan diklasifikasikan sebagai voltan purata punca kuasa dua yang berlaku dalam masa yang singkat ketika gangguan elektrik yang menyebabkan peralatan pengguna dan beban pada bekalan kuasa tidak berfungsi sepenuhnya dan juga dikenali sebagai faktor utama masalah gangguan bekalan kuasa. Walaubagaimanapun, tesis ini menyelidiki gangguan yang berlaku yang disebabkan oleh litar pintas atau kerosakan pada talian penghantaran tiga fasa. Tesis ini juga membandingkan perbezaan kejatuhan voltan pada setiap terminal Bas untuk sistem tiga fasa dimana perbezaan kejatuhan voltan adalah disebabkan oleh pengaruh sambungan pengubah dan juga disebabkan jenis kerosakan yang berlaku. Simulasi telah dijalankan menggunakan perisian PSCAD dimana ia berdasarkan pada beberapa tatarajah yang telah di modelkan. Sistem yang digunakan dalam tesis ini adalah sistem talian penghantaran dua Bas. Keputusan simulasi menunjukkan talian tiga fasa mengalami kejatuhan voltan yang rendah pada terminal Bas yang ke dua dibandingkan dengan terminal Bas yang pertama disebabkan oleh litar pintas dua fasa ke bumi. Ini adalah bergantung pada keadaan pengubah yang digunakan pada litar samada pengubah penaik atau pengubah penurun. Litar pintas atau kerosakan yang berlaku pada terminal Bas ke dua menyebabkan berlaku penurunan voltan yang dalam pada terminal motor aruhan dan kenaikkan arus pada terminal motor tersebut.

CHARACTERISTICS OF VOLTAGE SAGS IN POWER SYSTEMS

ABSTRACT

Voltage sags are the short durations in root-mean-square (RMS) rated AC voltage occur during faults may cause miss-operations to the customer's equipment and loads of power system and recognized as the most important power quality problem. However, this thesis investigates the sag event which is caused by a short circuit or fault to the three-phase transmission line. This thesis also presents the comparisons between voltage reductions at two Bus terminals for three-phase systems where the difference in voltage drop or reduction is caused by the transformer connection and also because of the type of fault caused. Simulations were carried out using PSCAD software which it is based on a number of configurations which has been modeled. The systems used in this thesis are two Bus transmission line systems. Simulation results indicate that three-phase line has a low voltage reduction at second bus terminal compared with the first Bus terminal due to the two-phase to ground fault. This is dependent on the transformer used in the circuit either step-up or step-down transformer. Short circuit or fault occurring on the second Bus terminal causing of the voltage decreased in the terminal of induction motor and increased induction motor current at the motor terminal.

TABLE OF CONTENT

	PAGE
ACKNOWLEDGMENT	i
DECLARATION SHEET	ii
APPROVAL AND DECLARATION SHEET	ii i
ABSTRAK	iv
ABSTRACT	v
TABLE OF CONTENTS	vi
LIST OF TABLES	ix
LIST OF FIGURES	X
LIST OF SYSBOLS	xii
CHAPTER 1 INTROUCTION	
1.0 Power Quality	1

1.1	Power Quality Disturbance	2
1.2	Objective	3
1.3	Problem Statement	4
1.4	Scope of the project	5
1.5	Report Outline	6

CHAPTER 2 LITERATURE REVIEW

2.0	Introduction	8
2.1	Definition Voltage Sag	9
2.2	Factors Affecting Sag Characteristics	10
2.3	Origin of Voltage Sags	12
2.4	The Influence of Transformer Winding Connections on Voltage sag	14

2.5	Induc	tion Motor	16
	2.5.1	Electrical and Mechanical Circuits	
		Of Induction Motors	17
	2.5.2	Squirrel-cage induction motor models	19
	2.5.3	Effect of Voltage Sags on Induction motor	21
		2.5.3.1 De-acceleration of Induction Motor	22
		2.5.3.2 Re-acceleration of Induction Motor	23
СНА	PTER	3 METHODOLOGY	
3.0	Introd	luction	24
3.1	PSCA	D . Col	26
3.2	Chara	cteristics of Software	26
3.3	Exam	ple of Circuit	28
	3.3.1	Modeling of Transformer	30
	3.3.2	Modeling of induction motor	31
		reche	
СНА	PTER 4	4 RESULT	
4.1	Introd	luction	33
4.2	Simul	lation result	33
	4.21	Cases 1: Step-up transformer with delta-wye to ground	
	is '	connection using dynamic load	34
	4.22	Cases 2: Step-down transformer with delta-wye to ground	
\bigcirc		connection using combine load	37
	4.23	Cases 3: Step-down transformer with delta-wye to ground	
		connection using dynamic load with different length of	
		transmission line	40
	4.24	Cases 4: Two transformers with delta-wye to ground	
		connection using dynamic load	45
	4.25	Cases 5: Step down transformers with delta-wye to ground	
		connection using two dynamic loads	48
4.3	Discu	ssion	50

CHAPTER 5 CONCLUSION

5.2	Summary	52
5.3	Recommendation	53

REFERENCES

onthis item is protected by original copyright 56 57 58 59 60

54

LIST OF TABLES

Tables No	0.	Page
1.1	Causes and Effects PQ Disturbances	3
4.1	Result of voltage, current, torque and speed in delta-wye connection measured at Bus 1	34
4.2	Result of voltage, current, torque and speed in delta-wye connection measured at Bus 2	36
4.3	Result of voltage, current, torque and speed and output power in delta-wye connection measured at Bus 1	37
4.4	Result of voltage, current, torque and speed in delta-wye connection measured at Bus 2	39
4.5	Result of voltage, current, torque, speed and output power in delta-wye connection for 100 km, 70 km, 50 km, 20 km and 5 km transmission line distance measured at Bus 1	41
4.6	Result of voltage, current, torque, speed and output power in delta-wye connection for 100 km, 70 km, 50 km, 20 km and 5 km transmission line distance measured at Bus 2	44
4.7	Result of voltage, current, torque, speed and output power in delta-wye connection measured at Bus 1	46
4.8	Result of voltage, current, torque, speed and output power in delta-wye connection measured at Bus 2	47
4.9	Result of voltage, current, torque, speed and output power in delta-wye connection measured at Bus 1	48
4.10	Result of voltage, current, torque, speed and output power in delta-wye connection measured at Bus 2	50

LIST OF FIGURES

Figures No.		Page
1.1	Demarcation of the various power quality issues defined by IEEE Std. 1159-1995	2
2.1	Waveform of voltage sag	10
2.2	The origin of fault positions that may cause sags experienced by an LV customer (Publication V)	13
2.3	Propagation of voltage sags from the customer bus to the equipment's terminals	15
2.4	Equivalent circuits per phase: (a) Positive sequence per phase and (b) Negative sequence per phase	17
2.5	Steady-state star equivalent circuit for the three-phase induction motor: (a) Single-cage model and (b) Double-cage model.	20
2.6	Motor and load torques before and during different sags	21
2.7	Variation of current, torque and speed during voltage sag	22
2.8	A change in speed during the voltage sag condition	23
3.1	Flow chart of working methodology	25
3.2	The configuration system under study: (a) Step-up transformer with dynamic load, (b) Step-up transformer with combine load, (c) Step-down transformer with dynamic load, (d) Two transformer with dynamic load and (e) Step-down transformer with two dynamic load	ers 29
3.3	Three phase two winding transformer model	30
3.4	Internal parameters of transformer	31
3.5	Squirrel cage induction model (SQC100)	32
3.6	Internal Parameters of SQC100 Model	32

4.1	Simulation of source current, source voltage, load voltage, load current and real power measured at Bus 2	35
4.2	Simulation of load current, voltage, speed, torque and real power measured at Bus 2	36
4.3	Simulation of voltage, current and power measured at Bus 2	38
4.4	Simulation of torque and speed measured at Bus 2	39
4.5	Simulation of source voltage, source current, load voltage, load current, speed, motor torque and output power measured at Bus 1	40
4.6	Simulation of source voltage, source current, load voltage, load current, output power, speed and torque measured at Bus 2	43
4.7	Simulation of source voltage, source current, load voltage and load current measured at Bus 2	46
4.8	Simulation of real power and reactive power measured at Bus 2	47
4.9	Simulation of source current, motor voltage, motor current, static current, output power and speed measured at Bus 2	49
O THIS IL		

LIST OF SYMBOLS, ABBREVIATIONS OR NOMENCLATURE

	А	Ampere
	EMTDC	Electromagnetic Transient Program with DC Analysis
	Hz	Hertz
	IEEE	Institute of Electrical and Electronics Engineers
	J	Inertia of the motor, kg. m^2
	$J \frac{d\omega_m}{dt}$	Torque Dynamic-present during speed transient
	kV	kilovolt
	Κ	Torque constant in V/A-rad/s
	L	Inductor
	MVA	Megavolt ampere
	MVAR	Mega volt amps reactive
	MW	Megawatt
	p.u.	per unit
	PCC	Point of Common Coupling
	PSCAD	Power System Aided Design
	RMS.	Root Mean Square
	R	Resistance
6	s	second
0	TNB	Tenaga Nasional Berhad
	T_e	Electrical torque
	T_L	Load torque, N.m
	T.Line	Transmission Line
	ω_m	The instantaneous angular velocity of the motor shaft, rad/s
	ω _s	Syncronous Angle Speed, rad/s
	V	Voltage
	Х	Reactance
	X/R	Transformer