AN INVESTIGATION OF HARMONIC EFFECT IN INDUSTRIAL SYSTEM EQUIPMENT

by

: mal copyright HILLMAN B ABDULLAH SANI

Report submitted in partial fulfillment of the requirements for the degree sach Critis tern of Bachelor of Engineering (Electrical System Engineering)

APRIL 2011

ACKNOWLEDGEMENT

Praise to the almighty Allah, the most gracious, the merciful and most benevolent whose blessing me through the process of completing this final year project.

First of all, I would like to thank to all those who contribute in completing this project. I am grateful especially to my supervisor, En Mohd Irwan B Yusoff for the knowledge, encouragement, guidance, critics and all contribution in order to help me finish this project.

I also thankful to my beloved families, friends and the one I love who had me directly or indirectly given me supports in doing my final project.

APPROVAL AND DECLARATION SHEET

This project report titled The An Investigation of Harmonic Effect in Industrial System Equipment was prepared and submitted by Hillman B Abdullah sani (Matrix Number: 071090223) and has been found satisfactory in terms of scope, quality and presentation as partial fulfillment of the requirement for the Bachelor of Engineering (Electrical System Engineering) in Universiti Malaysia Perlis (UniMAP). by originat

Checked and Approved by

School of Electrical System Engineering Universiti Malaysia Perlis

APRIL 2011

ABSTRAK

Pada masa ini, kuasa menjadi keperluan yang lebih dari semua halhal lain. Sistem kualiti power menjadi perhatian besar untuk memastikan kelangsungan banyak peralatan elektrik dan peranti. Kesan harmonik keatas sistem kuasa adalah salah satu isu kualiti kuasa yang harus di kaji dengan lebih teliti. Banyak penggunaan peranti elektronik kuasa memiliki konsekuensi dalam menyumbang meningkatkan distorsi harmonik. Masalah harmonik akan mempengaruhi baik pembekal power supply dan juga pelanggan.

Projek ini membahas mengenai kajian mengurangkan harmonik oleh pemasangan penapis pasif menggunakan perisian SIMULINK MATLAB dalam merancang sisi elektrik pelanggan dan simulasi untuk analisis distorsi harmonik. Simulasi dilakukan dengan dan tanpa pemasangan penapis. Selanjutnya keduadua keputusan yang diperolehi akan dibandingkan dan dianalisis. Menggunakan perkakas dari perisian SIMULINK, adalah bahawa tahap jumlah herotan harmonik (THD) berkurangan dengan pasif penapis yang dipasang pada sistem.

ABSTRACT

Nowadays, electricity becomes the most demand amongst all other things. Power system quality is the big concern to ensure the continuity of many electrical equipments and devices. Power system harmonic is one of the power quality issues that must be taken care of. Many power electronics devices contribute to harmonic in the system. Harmonic problem will affect both the power supply providers and also the customers.

This project studied about the harmonic mitigation by the installation of passive filter using MATLAB SIMULINK software in designing customer's electricity side and simulation for harmonic distortion analysis. Simulation was conducted with and without filter installation. Furthermore the two results obtained will be compared and analyzed. Using tools from the SIMULINK software, it is observed that the total harmonic distortion (THD) is reduced when passive filter is installed in the circuit.

TABLE OF CONTENT

TITLE	PAGE
ACKNOWLEDGEMENT	I
APPROVAL AND DECLARATION SHEET	п
ABSTRAK	III
ABSTRACT	IV
TABLE OF CONTENT	\mathbf{V}
LIST OF FIGURES	VIII
LIST OF TABLE	X
LIST OF ABBREVIATION	XI

•		OF ABBREVIATION	Х
CHAPTER 1	INTE	RODUCTION	
	1.1	Introduction	1
	1.2	Project Background	1
	1.3	Research Objective	2
	1.4	Scope of Research	2
	1.5	Problem Statement	3
	1.6	Chapter Organizations	3

CHAPTER 2

LITERATURE REVIEW

2.1	Introduction	5
2.2	What is Harmonic	5
2.2.1	Harmonics Source	6
2.2.2	Harmonic Distortion	7
2.2.3	Harmonic Effect on Loads	10
2.2.4	Total Harmonic Distortion	11
2.2.5	Harmonic Limit (IEEE Standards 519-1992) 12	
2.3	Power Factor	14
2.4	Critical Review of Previous Work	14
2.5	Non Linear Loads	15
2.5.1	Adjustable Speed Drives	18
2.5.2	Personal Computer (PC)	20
2.5.3	Fluorescent Lamp	22
2.6	Passive Filter	24
2.6.1	Single Tuned Filter	25

	2.0		24
	2.6.1	Single Tuned Filter	25
CHAPTER 3	MET	HODOLOGY	
ten s			
	3.1	Introduction	27
	3.2	Flow Chart of Design & Analysis Harmonic Filte	r28
	3.3	The Measurement Parameter of Loads	29
\bigcirc	3.4	The Calculation and Design of Passive Filter	30
	3.5	Overview of MATLAB/SIMULINK	34
	3.5.1	Creating the MATLAB/SIMULINK Input File	36
	3.5.2	Setup simulation and configuration option	37
	3.6	Filter Placement	38

CHAPTER 4 RESULT AND DISCUSSION

4.1	Introduction	39
4.2	The Result of Adjustable Speed Drive (ASD)	39
4.2.1	The Result without Filter	39
4.2.2	The Result with Passive Filter	40
4.3	The Result of Personal Computer (PC)	42
4.3.1	The Result without Filter	42
4.3.2	The Result with Passive Filter	43
4.4	The Result of Fluorescent Lamp	44
4.4.1	The Result without Filter	44
4.4.2	The Result with Passive Filter	45
4.5	The Result of Fluorescent Lamp Series with ASD	47
4.5.1	The Result without Filter	47
4.5.2	The Result with Passive Filter	48
4.6	The Result of Fluorescent Lamp Series with PC	49
4.6.1	The Result without Filter	49
4.7	Comparison Result between Loads without Filter	
15 1	and with Passive Filter	52
4.8	Discussion	54
4.9	Summary	54

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

5.1	Introduction	55
5.2	Conclusion	55
5.3	Recommendations	56

REFERENCES	57
APPENDICES	

LIST OF FIGURES

NO	TITLE Distorted waveform Harmonic spectrum Single tuned filter	PAGE
	07	
Figure 2.1	Distorted waveform	7
Figure 2.2	Harmonic spectrum	10
Figure 2.3	Single tuned filter	25
Figure 2.4	Common passive filter configurations	26
Figure 3.1	Flow of analysis and design of harmonic filter.	28
Figure 3.2	The connection for ASD	30
Figure 3.3	Shunt harmonic filter schematics	31
Figure 3.4	An overview of MATLAB/SIMULINK command and functions	35
Figure 3.5	Simulink Library Browsers	36
Figure 3.6	Data Window for Block Parameter	37
Figure 3.7	Circuit design with filter installed	38
Figure 4.1	The waveform of the 5 th and 7 th harmonic current without filter	40
Figure 4.2	The waveform of 5 th and 7 th harmonic current with passive filter	41
Figure 4.3	The data from the simulation for result of with passive filter	41
Figure 4.4	The waveform of the 5^{th} and 7^{th} harmonic current without filter	42
Figure 4.5	The waveform of 5 th and 7 th harmonic current with passive filter	43
Figure 4.6	The data from the simulation for result of with passive filter	44
Figure 4.7	The waveform of the 5 th and 7 th harmonic current without filter	45
Figure 4.8	The waveform of 5 th and 7 th harmonic current with passive filter	46
Figure 4.9	The data from the simulation for result of with passive filter	46
Figure 4.10	The waveform of the 5^{th} and 7^{th} harmonic current without filter	47
Figure 4.11	The waveform of 5^{th} and 7^{th} harmonic current with passive filter	48

- Figure 4.12 The data from the simulation for result of with passive filter 49
- Figure 4.13 The waveform of the 5^{th} and 7^{th} harmonic current without filter 50
- Figure 4.14 The waveform of 5th and 7th harmonic current with passive filter 51
- Figure 4.15 The data from the simulation for result of with passive filter 51

onthis item is protected by original convitation

LIST OF TABLES

		11×
TABLE	TITLE IEEE harmonic current distortion limit	PAGE
	- 90-	
2.1	IEEE harmonic current distortion limit	13
2.2	IEEE harmonic voltage distortion limit	13
orthi	IEEE harmonic voltage distortion limit the	

LIST OF ABBREVIATIONS

- **Total Harmonic Distortion** THD
- Adjustable Speed Drives ASD
- FFT Fast Fourier Transform
- Personal Computer PC
- High Intensity Discharge HID
- Compact Fluorescent Lamp CFL
- original copyright Point of Common Coupling PCC
- othis tem is protect Graphical User Interface