Phase Equilibrium Studies for the Development of Fuel Systems and LPG Fuel Mixture Using Regular Solution

Theory

UNIVERSITI MALAYSIA PERLIS

2011

ACKNOWLEDGEMENT

I would like to express my appreciation to all those people who have contributed to make this work possible through their help and support along the way.

My deepest gratitude goes to my thesis supervisor Associate Prof Dr Qassim Mohamad Q. Hashim for giving me the possibility to do this interesting project and for his trustworthy advice and support through all the phases of the project. I am indebted to Associate Prof Dr Qassim Mohamad Q. Hashim for his remarkable qualities, such as his depth of perception and his lucid presentation, perhaps the best I have come across so far, will always continue to inspire me. The experience of working with him, I strongly believe, will have far-reaching influence in my future life.

I express my gratitude and indebtedness to the staff of bioprocess engineering school for providing me with the necessary departmental facilities and valuable suggestions and encouragement.

Finally, I express my humble regards to my parents, for their immense support, sacrifice and their unfettered encouragement at all stages.

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENT	II
LIST OF TABLES	VIII
LIST OF FIGURES	XIII
NOMENCLATURE	XVIII
ABBREVIATION	XX
GLOSSARY	XXII
ABSTRAK	XXIII
ABSTRACT	XXIV
CHAPTER ONE INTRODUCTION	1
1.1 THEORETICAL ASPECT OT THE WORK	1
1.2 PHASE EQUILIBRIA DEVELOPMENT TECHNIQUE	4
1.2.1 Properties Of Supercritical Fluid	6
© 1.2.2 Hydrocarbon Fuel Mixture With Water	8
1.3 LPG AND LNG TESTING AND INSPECTION	9
1.4 LIQUID NATURAL GAS SERVICE	10
1.5 LIQUID NATURAL GAS (LNG) AND LIQUID PETROLEUM (LPG) USAGE	11
1.5.1 The Usage Of The Liquefied Natural Gas	11
1.5.2 The Usage Of The Liquefied Petroleum Gas	12
1.6 PHASE EQUILIBRIA MUTUAL SOLUBILITY	14

	DETERMINATION USING GAS-LIQUID CHROMATOGRAPHY (GLC) UNIT	
1.7	SCOPE OF THE PRESENT WORK	15
	1.7.1 Types Of Systems Studied In The Present Work	15
	1.7.2 Systems Studied Experimentally In The Present Work	17
1.8	THE OBJECTIVES OF THE WORK	22
CHAPTER T	WO LITERATURE REVIEW	24
2.1	VAPOUR – LIQUID EQUILIBRIUM	24
2.2	EXPERIMENTAL DETERMINATION OF PHASE EQUILIBRIUM IN SYSTEMS WHERE THE COMPONENTS HAVE WIDELY DIFFERENT VOLATILITY	26
	2.2.1 At Low Pressure	26
	2.2.1 At High Pressure	27
2.3	HISTORICAL PERSPECTIVE OF GASEOUS COMPOUNDS SYSTEMS	27
2.4	FUEL PRODUCTION BASED ON LNG AND LPG	28
2.5	FUEL MIXTURE HISTORY AS LNG AND LPG	35
2.6	GASEOUS COMPOUNDS APPLICATION	38
	2.6.1 Gaseous Elements	38
	2.6.2 Gaseous Compounds	38
	2.6.3 Gas Mixtures	38
2.7	GASEOUS COMPOUNDS IN FUEL MIXTURE APPLICATION	39
2.8	UNIFAC AND GROUP CONTRIBUTION MODELS IN SUBCRITICAL PROPANE 2.8.1 The UNIFAC Model	42 42

	2.8.2	Group Contribution Method In UNIFAC	44
	2.8.3	Activity Coefficient (γ) Via UNIFAC Model	48
2.9	GEN	ERAL EQUILIBRIUM CONDITIONS	49
2.10	THE	EQUATION OF STATE (EOS)	52
	2.10.1	The Equation Of Van der Waals Of State	53
	2.10.2	Redlich- Kwong (RK) And Soave Redlich- Kwong (SRK) Equations Of State	54
	2.10.3	Peng-Robinson Equation Of State	55
	2.10.4	EOS Extension For The Mixture Of Applications	55
2.11	ACTI	IVITY COEFFICIENT (x)	56
2.12	RELA	ATIVE VOLATILITY	57
2.13	GAS NEAI	CHROMATOGRAPHY IN SUPERCRITICAL OR R-CRITICAL PROCESS	59
	2.13.1	Various Chromatographic Methods And Their Difference	60
	2.13.1	GC Analysis Of Fuel Derivatives	63
CHAPTER T	HREE	MATERIAL AND METHODOLOGY	65
3.1	MAT	ERIALS AND CHEMICALS	65
	3.1	Chemicals	65
	3.2	Equipment	66
	3.3	Glassware	66
3.2	ANA	LYTICAL METHOD	67
3.3	THE	MAIN STEPS FOR THIS WORK	71
3.4	GAS 3.4.1	CHROMATOGRAPHY (GC) ANALYSIS SET-UP Gas Chromatographic Analysis Conditions	71 71

3.	.4.2 Percentage (%) Of Hydrocarbon Component Extracted Determination	73
CHAPTER FOU	UR RESULTS AND DISCUSSION	75
4.1	DETAILS OF THE CALCULATION OF MUTUAL SOLUBILITIES FROM ACTIVITY COEFFICIENTS DATA FOR THE PHASES	75
4.2	REGULAR SOLUTION AND SIMILAR EXPRESSION FOR ACTIVITY COEFFICIENTS	76
4.3	EXPRESSION FOR $(\ln \gamma_i^E)$ AND $(\ln \gamma_i^S)$ DERIVED FROM THE QUASI-LATTICE AND UNIFAC MODEL	78
4.4	DATA COLLECT FROM LITERATURE	82
4.	4.1 System Propane-Decane	82
4.	4.1 System Propane-Hexane	86
4.5	EXPERIMENT DATA COMPARING WITH THE THEORETICAL DATA	87
4.6	RELATIVE VOLATILITY	101
4.7	EXPERIMENT DATA FOR THE SYSTEM PROPANE- HEPTANE AND PROPANE-OCTANE	112
4.8 5	EXPERIMENT DATA FOR THE SYSTEM HEXANE- DECANE	126
4.	8.1 System Hexane-Decane At Temperature 200°C	127
4.	8.2 System Hexane-Decane At Temperature 225°C	131
4.	.8.3 System Hexane-Decane At Temperature 250°C	134
CHAPTER FIV	E CONCLUSION	138
CHAPTER SIX	RECOMMENDATIONS	140
REFERENCE		141
LIST OF PUBL	ICATION	148

VI

APPENDICES	149
APPENDIX A: OTHER FUEL TERMINOLOGIES	149
APPENDIX B: METHANE SOLUBILITY IN WATE	ER 152
APPENDIX C: CRITICAL PROPERTIES FOR SUPERCRITICAL SOLVENTS	VAIROUS 153
APPENDIX D: NEW UNIFAC GROUP INTERACTI	ION 154
APPENDIX E: UNIFAC GROUP CON	TRIBUTION 155
o this item is protected by original con	

VII

LIST OF TABLES

		Page
Table 2.1:	Lists some of the more useful properties for liquid natural gas (LNG) and liquid petroleum gas (LPG).	34
Table 2.2:	Properties of the three type of mixtures: solution, colloid and dispersion.	40
Table 2.3:	Examples of the three types of mixtures based on dispersed phase and medium.	41
Table 2.4:	Determination of activity coefficients from various models corresponding to its conditions (Brunner & Dohrn, 1991).	49
Table 2.5:	A comparison of different chromatography variables with different chromatography techniques (+ Parameter which can be varied readily to alter retention and selectivity) (Bartle et.al, 1995).	62
Table 3.1:	List of chemicals used in this research experimental work.	65
Table 3.2:	List of equipment used in this research experimental work.	66
Table 4.1:	Experimental data for propane-decane (LNG) extracted from (Haruki et.al, 2003) at T=138°C and at various pressures together with the UNIFAC model to obtain results of the back-calculated effective values of interaction parameters ($\alpha_{C3H8/CH}$, $\alpha_{CH/C3H8}$).	83
Table 4.2:	Experimental data for propane-decane (LNG) extracted from (Haruki et.al, 2003) at T=170°C and at various pressures together with the UNIFAC model to obtain results of the back-calculated effective values of interaction parameters ($\alpha_{C3H8/CH}$, $\alpha_{CH/C3H8}$).	84
Table 4.3:	Experimental data for propane-decane (LNG) extracted from (Haruki et.al, 2003) at T=204.4°C and at various pressures together with the UNIFAC model to obtain results of the back-calculated effective values of interaction parameters ($\alpha_{C3H8/CH}$, $\alpha_{CH/C3H8}$).	85
Table 4.4:	Experimental data for propane-decane (LNG) extracted from (Haruki et.al, 2003) at $T=237.8^{\circ}C$ and at various pressures together with the UNIFAC model to obtain	85

results of the back-calculated effective values of interaction parameters ($\alpha_{C3H8/CH}$, $\alpha_{CH/C3H8}$).

- **Table 4.5:**Experimental data for propane-hexane (LPG) extracted86from (Haruki et.al, 2003) at T=150°C and at various
pressures together with the UNIFAC model to obtain
results of the back-calculated effective values of interaction
parameters ($\alpha_{C3H8/CH}$, $\alpha_{CH/C3H8}$).
- **Table 4.6:**Experimental data for propane-hexane (LPG) extracted87from (Haruki et.al, 2003) at T=180°C and at various
pressures together with the UNIFAC model to obtain
results of the back-calculated effective values of interaction
parameters ($\alpha_{C3H8/CH}$, $\alpha_{CH/C3H8}$).
- **Table 4.7:**The comparison of the experimental and theoretical
(UNIFAC model) propane solubilities in decane (C_3H_8
mole fraction, X $_{C3H8}$) at T=138°C and at various pressures
for the system (propane-decane).

89

- **Table 4.8:**The comparison of the experimental and theoretical
(UNIFAC model) propane solubilities in decane (C_3H_8
mole fraction, X c_{3H8}) at T=170°C and at various pressures
for the system (propane-decane).89
- **Table 4.9:**The comparison of the experimental and theoretical
(UNIFAC model) propane solubilities in decane (C_3H_8
mole fraction, X $_{C3H8}$) at T=204.4°C and at various
pressures for the system (propane-decane).90
- **Table 4.10:**The comparison of the experimental and theoretical
(UNIFAC model) propane solubilities in decane (C_3H_8
mole fraction, X $_{C3H8}$) at T=237.8°C and at various
pressures for the system (propane-decane).90
- **Table 4.11:**The comparison of the experimental and theoretical
(UNIFAC model) propane solubilities in hexane (C_3H_8
mole fraction, X $_{C3H8}$) at T=150°C and at various pressures
for the system (propane-hexane).95
- **Table 4.12:**The comparison of the experimental and theoretical
(UNIFAC model) propane solubilities in hexane (C_3H_8
mole fraction, X $_{C3H8}$) at T=180°C and at various pressures
for the system (propane-hexane).95
- **Table 4.13:**The pressure in bar against vapor propane mole fraction102

(Yi), propane activity coefficient (Yi), decane activity coefficient (Yi) and relative volatility (Rv) at temperature 138⁰C. 104 **Table 4.14:** The pressure in bar against vapor propane mole fraction (Yi), propane activity coefficient (Yi), decane activity coefficient (Yi) and relative volatility (Rv) at temperature 170° C. **Table 4.15:** The pressure in bar against vapor propane mole fraction 106 (Yi), propane activity coefficient (Yi), decane activity coefficient (Yi) and relative volatility (Rv) at temperature $204.4^{\circ}C.$ The pressure in bar against vapor propane mole fraction 107 **Table 4.16:** (Yi), propane activity coefficient (Yi), decane activity coefficient (Yi) and relative volatility (Rv) at temperature 237.8[°]C. The pressure in bar against vapor propane mole fraction 109 **Table 4.17:** (Yi), propane activity coefficient (Yi), hexane activity coefficient (Yi) and relative volatility (Rv) at temperature 150° C. The pressure in bar against vapor propane mole fraction 110 **Table 4.18:** (Yi), propane activity coefficient (Yi), hexane activity coefficient (Yi) and relative volatility (Rv) at temperature 180[°]C. The vapor propane mole fraction (Xi), propane activity **Table 4.19:** 112 coefficient (Yi), Gibbs free energy (Qi), gradient of Gibbs energy (dQi) and (d²Qi) at temperature 150°C for the system propane-heptane. **Table 4.20:** The vapor propane mole fraction (Xi), propane activity 113 coefficient (Yi), Gibbs free energy (Qi), gradient of Gibbs energy (dQi) and (d²Qi) at temperature 175°C for the system propane-heptane. 114 **Table 4.21:** The vapor propane mole fraction (Xi), propane activity coefficient (Yi), Gibbs free energy (Qi), gradient of Gibbs energy (dQi) and (d²Qi) at temperature 200°C for the system propane-heptane. **Table 4.22:** The vapor propane mole fraction (Xi), propane activity 115 coefficient (Yi), Gibbs free energy (Qi), gradient of Gibbs

energy	(dQi)	and	(d^2Qi)	at	temperature	225°C	for	the
system	propan	e-hep	otane.					

- **Table 4.23:**The vapor propane mole fraction (Xi), propane activity116coefficient (Yi), Gibbs free energy (Qi), gradient of Gibbs
energy (dQi) and (d^2Qi) at temperature 250°C for the
system propane-heptane.116
- **Table 4.24:**The vapor propane mole fraction (Xi), propane activity119coefficient (Yi), Gibbs free energy (Qi), gradient of Gibbs
energy (dQi) and (d^2Qi) at temperature 150°C for the
system propane-octane.100°C
- **Table 4.25:**The vapor propane mole fraction (Xi), propane activity
coefficient (Yi), Gibbs free energy (Qi), gradient of Gibbs
energy (d1Qi) and (d²Qi) at temperature 175°C for the
system propane-octane.120
- **Table 4.26:**The vapor propane mole fraction (Xi), propane activity121coefficient (Yi), Gibbs free energy (Qi), gradient of Gibbs
energy (dQi) and (d^2Qi) at temperature 200°C for the
system propane-octane.121
- **Table 4.27:**The vapor propane mole fraction (Xi), propane activity122coefficient (Yi), Gibbs free energy (Qi), gradient of Gibbs
energy (dQi) and (d^2Qi) at temperature 225°C for the
system propane-octane.122
- **Table 4.28:**The vapor propane mole fraction (Xi), propane activity123coefficient (Yi), Gibbs free energy (Qi), gradient of Gibbs
energy (dQi) and (d²Qi) at temperature 250°C for the
system propane-octane.123
- **Table 4.29:**The vapor hexane mole fraction (Xi), hexane activity127coefficient (Yi), Gibbs free energy (Qi), gradient of Gibbs
energy (dQi) and (d^2Qi) at temperature 200°C for the
system hexane-decane at different times.127
- **Table 4.30:**The vapor hexane mole fraction (Xi), hexane activity131coefficient (Yi), Gibbs free energy (Qi), gradient of Gibbs
energy (dQi) and (d^2Qi) at temperature 225°C for the
system (hexane-decane) at different times.

Table 4.31:The vapor hexane mole fraction (Xi), hexane activity134coefficient (Yi), Gibbs free energy (Qi), gradient of Gibbs

XI

energy (dQi) and (d²Qi) at temperature 250°C for the system (hexane-decane) at different times.

- Table C.1: The critical properties and condition for various 153 supercritical fluids solvent (Ram et al., 2006).
- Table D.1: New UNIFAC group interaction parameters are the recent 154 available table (Witting et al., 2002).
- The UNIFAC group contribution classification of the three Table E.1: 155 functional groups for the hydrocarbon components studied

. of i gonents, opinishing conviction

LIST OF FIGURES

		Page
Figure 1.1:	The phase diagram of a single- substance in subcritical fluid.	5
Figure 1.2:	The schematic diagram of inter molecules potential and the average energies of a molecule in gas, liquid and subcritical states.	7
Figure 1.3:	The applications using propane as a solvent.	8
Figure 1.4:	Solubilities of various hydrocarbons at 377.59 K (Brooks et.al, 1951).	9
Figure 1.5:	The global reserves in trillion cubic feet.	12
Figure 2.1:	Typical Natural Gas and LNG Composition (Danesh, 1998).	32
Figure 2.2:	Worldwide growths in LNG Demand.	37
Figure 2.3:	The vapor-liquid equilibrium of a hypothetical binary liquid mixture and illustrates how an increase in either the pressure or temperature decreases the relative volatility of the mixture.	59
Figure 3.1:	Flowchart of the main operating procedure in this work.	69
Figure 3.2:	Flowchart algorithm of the UNIFAC equation for determining the value of activity coefficients and Gibbs free energy.	70
Figure 3.3:	Schematic diagram of the gas chromatography used in the present work.	72
Figure 3.4:	A sample chromatogram of two component mixture in an illustrated retention times.	74
Figure 4.1:	Activity coefficient for propane against propane mole fraction (X_{C3H8}) at constant temperature T=170°C and at variable pressures for the system (propane-decane).	91
Figure 4.2:	Gibbs free energy for propane (Qi) against propane mole fraction (X_{C3H8}) at constant temperature T=170°C and at	91

variable pressures for the system (propane-decane).

Figure 4.3:	Gradient of the molar Gibbs function (dQi) for propane calculated against propane mole fraction (X_{C3H8}) at constant temperature T=170°C and at variable pressures for the system (propane-decane).	92
Figure 4.4:	Parameter (d^2Qi) for propane calculated against propane mole fraction (X_{C3H8}) at constant temperature T=170°C and at variable pressures for the system (propane-decane).	92
Figure 4.5:	Activity coefficient for propane against propane mole fraction (X_{C3H8}) at constant temperature T=237.8°C and at variable pressures for the system (propane-decane).	93
Figure 4.6:	Gibbs free energy for propane (Qi) against propane mole fraction (X_{C3H8}) at constant temperature T=237.8°C and at variable pressures for the system (propane-decane).	93
Figure 4.7:	Gradient of the Gibbs energy (dQi) for propane calculated against propane mole fraction (X_{C3H8}) at constant temperature T=237.8°C and at variable pressures for the system (propane-decane).	94
Figure 4.8:	Parameter (d^2Qi) for propane calculated against propane mole fraction (X _{C3H8}) at constant temperature T=237.8°C and at variable pressures for the system (propane-decane).	94
Figure 4.9:	Activity coefficient for propane against propane mole fraction (X_{C3H8}) at constant temperature T=150°C and at variable pressures for the system (propane-hexane).	96
Figure 4,10:	Gibbs free energy for propane (Qi) against propane mole fraction (X_{C3H8}) at constant temperature T=150°C and at variable pressures for the system (propane-hexane).	96
Figure 4.11:	Gradient of the Gibbs free energy (dQi) for propane calculated against propane mole fraction (X_{C3H8}) at constant temperature T=180°C and at variable pressures for the system (propane-hexane).	97
Figure 4.12:	Parameter (d^2Qi) for propane calculated against propane mole fraction (X_{C3H8}) at constant temperature T=150°C and at variable pressures for the system (propane-hexane).	97
Figure 4.13:	Activity coefficient for propane against propane mole	98

	fraction (X_{C3H8}) at constant temperature T=180°C and at variable pressures for the system (propane-hexane).	
Figure 4.14:	Gibbs free energy for propane (Qi) against propane mole fraction (X_{C3H8}) at constant temperature T=180°C and at variable pressures for the system (propane-hexane).	98
Figure 4.15:	Gradient of the Gibbs free energy (dQi) for propane calculated against propane mole fraction (X_{C3H8}) at constant temperature T=180°C and at variable pressures for the system (propane-hexane).	99
Figure 4.16:	Parameter (d^2Qi) for propane calculated against propane mole fraction (X_{C3H8}) at constant temperature T=180°C and at variable pressures for the system (propane-hexane).	99
Figure 4.17:	The pressure in bar against vapor propane mole fraction (Yi) at temperature 138°C.	102
Figure 4.18:	The pressure in bar against relative volatility (Rv) at temperature 138°C.	103
Figure 4.19:	The pressure in bar against vapor propane mole fraction (Yi) at temperature 170°C.	104
Figure 4.20:	The pressure in bar against relative volatility (Rv) at temperature 170°C.	105
Figure 4.21:	The pressure in bar against vapor propane mole fraction (Yi) at temperature 204.4°C.	106
Figure 4.22:	The pressure in bar against relative volatility (Rv) at temperature 204.4° C.	107
Figure 4.23:	The pressure in bar against vapor propane mole fraction $(Y1)$ at temperature 237.8°C.	108
Figure 4.24:	The pressure in bar against relative volatility (Rv) at temperature 237.8° C.	108
Figure 4.25:	The pressure in bar against vapor propane mole fraction (Yi) at temperature 150°C.	109
Figure 4.26:	The pressure in bar against relative volatility (Rv) at temperature 150° C.	110

Figure 4.27:	The pressure in bar against vapor propane mole fraction (Yi) at temperature 180°C.	111
Figure 4.28:	The pressure in bar against relative volatility (Rv) at temperature 180° C.	111
Figure 4.29:	Activity coefficient for propane against propane mole fraction (x_{C3H8}) for the system propane-heptane.	117
Figure 4.30:	Gibbs free energy for propane (Qi) against propane mole fraction (x_{C3H8}) for the system propane-heptane.	117
Figure 4.31:	Gradient of the Gibbs energy (dQi) for propane calculated against propane mole fraction (x_{C3H8}) for the system propane-heptane.	118
Figure 4.32:	Parameter (d^2Qi) for propane calculated against propane mole fraction (x_{C3H8}) for the system propane-heptane.	118
Figure 4.33:	Activity coefficient for propane against propane mole fraction (x_{C3H8}) for the system propane-octane.	124
Figure 4.34:	Gibbs free energy for propane (Qi) against propane mole fraction (x_{C3H8}) for the system propane-octane.	124
Figure 4.35:	Gradient of the Gibbs free energy (dQi) for propane calculated against propane mole fraction (x_{C3H8}) for the system propane-octane.	125
Figure 4.36:	Parameter (d^2Qi) for propane calculated against propane mole fraction (x_{C3H8}) for the system propane-octane.	125
Figure 4.37:	Activity coefficient for hexane against hexane mole fraction (Xi) for the system (hexane- decane) at temperature 200°C.	128
Figure 4.38:	Gibbs free energy for hexane (Qi) against hexane mole fraction (Xi) for the system (hexane-decane) at temperature 200°C.	128
Figure 4.39:	Gradient of the Gibbs free energy (dQi) for hexane calculated against hexane mole fraction (Xi) for the system (hexane-decane) at temperature 200°C.	129

Figure 4.40:	Parameter (d^2Qi) for hexane calculated against hexane mole fraction (Xi) for the system (hexane- decane) at temperature 200°C.	129
Figure 4.41:	Activity coefficient for hexane against hexane mole fraction (Xi) for the system (hexane-decane) at temperature 225°C.	131
Figure 4.42:	Gibbs free energy for hexane (Qi) against hexane mole fraction (Xi) for the system (hexane-decane) at temperature 225°C.	132
Figure 4.43:	Gradient of the molar Gibbs function (dQi) for hexane calculated against hexane mole fraction (Xi) for the system (hexane-decane) at temperature 225° C.	132
Figure 4.44:	Parameter (d ² Qi) for hexane calculated against hexane mole fraction (Xi) for the system (hexane-decane) at temperature 225°C.	133
Figure 4.45:	Activity coefficient for against hexane mole fraction (Xi) for the system (hexane-decane) at temperature 250°C.	135
Figure 4.46:	Gibbs free energy for hexane (Qi) against hexane mole fraction (Xi) for the system (hexane-decane) at temperature 250°C.	135
Figure 4.47:	Gradient of the Gibbs free energy (dQi) for hexane calculated against hexane mole fraction (Xi) for the system (hexane-decane) at temperature 250° C.	136
Figure 4.48:	Parameter (d^2Qi) for hexane calculated against hexane mole fraction (Xi) for the system (hexane-decane) at temperature 250°C.	136
Figure A.1:	The liquid natural gas (LNG) composition.	149
Figure A.2:	The liquid petroleum gas (LPG) composition.	150
Figure B.1:	Methane solubility in water from Culberson and McKetta (Culberson & McKetta, 1951).	152

NOMENCLATURE

Symb	ool Description	Unit
T_b	Temperature of the component	(°C)
T _c	Critical temperature of the component	(°C)
Pc	Critical pressure of the component	(MPa)
P _i	Pressure of the component	(MPa)
Y _A	Mole fraction of component A in gas	
X _A	Mole fraction of component A in liquid	
Н	Henry's Constant	
a _{JK}	Group interaction parameter	
Q^E	Excess Gibbs energy	J/gmol
N_i	Number of moles of species	
q_i	Area parameter of component i	
r _i	Volume parameter of component i	
Q_k	Area parameter, contribution of molecular group	
R _k	Volume parameter, contribution of molecular group	

Rv	Relative volatility
Ζ	Coordination number
Wk	Group mole fraction
D _{RF}	Detector response factors
K _{A,B}	Capacity factors of component A and B
Q	Gibbs function
К	Vapor-liquid distribution
Greek Symbols	2 by orice
γ	Activity coefficients
ξ _k	Group surface area fraction
α	Selectivity of a component
θ this it	Area fraction of component
© `	

ABBREVIATIONS

AAD	Average Absolute deviations
CCS	Chemical Component System
DDB	Dortmund Data Bank
EOS	Equation of State
GC	Gas Chromatography
GCM	Group Contribution Method
GLC	Gas Liquid Chromatography
НМС	Heavy Molecular Components
HPLC	High Pressure Liquid Chromatography
LMC	Light Molecular Components
LNG	Liquid Natural Gas
LPG	Liquid Petroleum Gas
MHV	Mixing rule of Huron-Vidal
NRTL	Non-Random-To-Liquid
PVT	Pressure, Volume and Temperature

SFC	Supercritical Fluid Chromatography
SFE	Supercritical Fluid Extraction
SRK	Soave-Redlich-Kwong
TCF	Trillion Cubic Feet
UNIFAC	Universal Functional Activity Coefficients
UNIQUAC	Universal Quasi Activity Coefficients
VLE	Vapor-Liquid Equilibrium
o this item is protected to	A
\bigcirc	

GLOSSARY

English	Bahasa Malaysia
Supercritical Fluid Extraction	Pengekstraken Bendalir Lampau Genting
Yield	Kadar hasil
Solubility	Keterlarutan
Density	Ketumpatan
Selectivity	Kemermilihan
Experimental Works	Kajian Ujikaji
Theoretical Works	Kajian Teoritical
Phase Equilibrium	Keseimbangan Fasa
Interaction Parameter	Parameter Interaksi
Group Contribution Method	Keadah Sumbangan Berkumpulan
Vapor-Liquid Equilibrium	Kieseimbangan Fasa Wap dan Cecair
Coordination Number	Nombor Koordinasi
Intermolecular Forces	Kekuasaan Antra Molekul
Mole Fraction	Mole Fraksi

ABSTRAK

Tujuan kajian ini adalah untuk menilai tahap kelayakan proses keseimbangan kelarutan menggunakan propane superkritis. Sebuah model termodinamik berdasarkan pada kajian teori penyelesaian biasa untuk menilai kegiatan ekspresi pekali setiap tahap untuk campuran sebatian gas untuk meramal data kelarutan. Kegunaan persamaan diambil daripada teori penyelesaian termodinamik untuk mengumpul dan meramal kelarutan reksa yang dibincangkan dengan rujukan pasangan binari (propana / Heksan dan propana / dekana sistem). Hal ini boleh disimpulkan bahawa sesetengah pengiraan parameter diperlukan untuk pengiraan sebegini akan menjadi sukar jika heksana komponen terlarut atau berat atau dekana di LPG atau LNG yang peka terhadap suhu atau sebatian kompleks tentang yang dikenali untuk struktur formulanya. Satu prosedur alternatif kegiatan ekspresi pekali daripada teori penyelesaian biasa yang dikenali sebagai teori UNIFAC untuk setiap tahap. Perhitungan sepanjang garis-garis ini digambarkan dan dasar fizikal untuk melaksanakan kaedah ini adalah dalam keadaan yang relevan untuk dibincangkan. Pendekatan secara khusus teori UNIFAC telah dijumpai untuk berada pada ramalan yang baik untuk kajian system dan komposisi LNG LPG buat masa sekarang.

ABSTRACT

The objective of this work is the assessment of the feasibility studies of phase equilibria mutual solubility process utilizing subcritical propane. A thermodynamic model based on regular solution theory studies to evaluate activity coefficients expression to each the heavy compound such as (propane and hexane) and the solvent such as propane in order to predict mutual solubility data. The use of equations derived from thermodynamic of the regular solution theory for collecting and predicting mutual solubility discussed with reference to binary pairs (propane / hexane and propane / decane systems). It is concluded that the calculation of some of the parameters required for these calculation would be difficult if the solute or heavy component hexane or decane in LPG or LNG were sensitive to temperature or complex substance about which little was known apart for its structural formula. An alternative procedure is to apply activity coefficients expression of the regular solution theory from which is called Universal Functional Activity Coefficient theory (UNIFAC) to each phase. Calculation along these lines described and the physical basis for applying this method under the relevant condition discussed. The UNIFAC theory approach in particular has been found to be in good estimation for the present studies of these systems LNG and LPG composition.