

DEVELOPMENT OF NANOPARTICLE SENSORS FOR THE DETECTION AND QUANTIFICATION OF SWINE DNA IN MIXED BIOLOGICAL AND COMMERCIAL SAMPLES FOR HALAL AUTHENTICATION is item is protected

Βy

MD. EAQUB ALI

A DISSERTATION SUBMITTED IN THE FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY ON NANOBIOTECHNOLOGY **ENGINEERING**

> **INSTITUTE OF NANO ELECTRONIC ENGINEERING UNIVERSITI MALAYSIA PERLIS** 2011

UNIVERSITI MALAYSIA PERLIS

	DEL	ARATION OF THESIS	
Author's Full Name	:	MD. EAQUB ALI	
Date of birth	:	01 November 1975	
Title	:	DEVELOPMENT OF NANOPARTICLE SENSORS FOR THE DETECTION AND QUANTIFICATION OF SWINE DNA IN MIXED BIOLOGICAL AND COMMERCIAL SAMPLES FOR HALAL AUTHENTICATION	
Academic Session	:	2009/2010	
I hereby declared that this thesis becomes the property of Universiti Malaysia Perlis (UniMAP) and to be placed at the library of UniMAP. This thesis is classified as:			
CONFIDENTIAL		(Contains confidential information under the Official Secret	
RESTRICTED Act of 1972) Contains Restricted information as specified by the			
OPEN ACCESSImage: state of the s			
I, the author, give permission to the Universiti Malaysia Perlis to reproduce this thesis in whole or in part for the purpose of research or academic exchange only (except during a period of years, if so requested above)			
years, it so request		Certified by:	
SIGNATURE		SIGNATURE OF SUPERVISOR	
X 0230767		Professor Dr. Uda Hashim	
(PASSPORT NO./NEW IC NO.)		.) NAME OF SUPERVISOR	
Date:		Date:	

NOTES: * If there is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentiality or restriction.

ACKNOWLEDGEMENT

In the name of Allah Subhanahutaw'ala (SWT), The Most Gracious, The Most Generous, The Most Careful, The Most Merciful, and The Most Abled Supreme Creator, Who has given me enough strength, courage, physical and mental psyches, and the creativity to complete this work within my expected time-frame. May Allah (SWT) send His profound mercy and peace to Prophet Mohammed (peace be upon him) through whom He has taught me His Guidance for here and hereafter.

I would like to express my profound and deepest gratitudes to Professor Dr. Uda Hashim for his multifaceted generous supports, outstanding guidance, wisdom, and honesty that he gave me through my degree. The resources required for this research were not available in Universiti Malaysia Perlis (UniMAP). However, the extensive networks and collaborations of my supervisor did not let me feel the limitations of any equipments or resources throughout the work. He created me opportunities for working in the most up-to-date laboratories across Malaysia, such as Malaysian Genom Institute (MGI) at Bangi, and Institute of Biosciences (IBS) and Institute of Halal Products Research (IPPH) in Universiti Putra Malaysia (UPM). His constant inspirations for working and publishing papers, constructive criticism, 24-h availability in a day, and sincere willingness to solve problems has made this work to be completed within a period of 2-years.

I would also like to extend my deepest gratitudes to Professor Y. B. Che Man and Dr. Shuhaimi Mustafa of IPPH for providing funds and access to all facilities available not only in their institute but also throughout the UPM and MGI. Frankly speaking, they were more than willing to provide me with help, guidance, and encouragement. I am also thankful to Dr. Fazlul Bari of the School of Material Engineering in UniMAP for his sincere willingness to listen my problems, constructive suggestions and encouragements. I would further extend my deepest thanks to Mohd Hazim Mohd Yusop of IPPH for his help and cooperation in learning techniques, communicating people and travelling across KL, and purchasing reagents and kits.

Special thanks to my fellow lab-members, Mohammed Kashif, Thikra S. Dhahi, Foo Kai Loong, Tijani Adam, Mohammed Humayun, Nazawa Taib, Shahida Arina, Hafiza Najib, and Asniza Abas, who are all great people and great scientists, and who have given me lot of fun and made my time spent in the lab enjoyable.

Finally, I sincerely appreciate the unlimited sacrifices and encouragements made by my wife Juwairiah Sultana throughout the works. Thanks my daughters, Sababa and Nirvana, and my son Obada for playing with me and giving me beautiful smiles that forget me all frustrations and tiredness after the day-long work, and inspire and push me into new works with indomitable courages.

Table of Contents

Contents	Page
Acknowledgement	i
Table of Contents	ii
List of Figures	viii
List of Tables	xi
Symbol and Abbreviations	xii
Abstrak	xvi
List of Tables Symbol and Abbreviations Abstrak Abstract	xvii
Chapter 1: Research Background, Objectives, and Scopes	1
1.1 Introduction	2
1.2 Problem Statements	5
1.3 Study Objectives	5
Chapter 1: Research Background, Objectives, and Scopes 1.1 Introduction 1.2 Problem Statements 1.3 Study Objectives 1.3.1 General Objectives 1.3.2 Specific Objectives 1.4 Scopes of Studies	5
1.3.2 Specific Objectives	5
1.4 Scopes of Studies	6
1.4.1 Development of Shorter-Sized DNA Markers	6
1.4.2 Performance Tests of the DNA Markers	7
1.4.3 Development of Nanobioprobe Sensors	8
1.4.4 Performance Test of the Nanobioprobe Sensors	9
1.5 Thesis Organogram	10
Chapter 2: Species Authentication Methods in Foods and Feeds:	12
The Present, Past and the Future of Halal Forensics	
2. Abstract	13
2.1 Introduction	14
2.2 Existing Methods for Meat Speciation	15
2.2.1 Microscopic Methods	15
2.2.2 Lipid-based Methods	16
2.2.3 Protein-based Methods	17

2.2.3.1 Quantification of Histidine Dipeptides	17
2.2.3.2 Analysis of Muscle Proteins	18
2.2.3.3 Analysis of Species Specific Osteocalcin	19
2.2.3.4 Detection of Species Specific Proteins by ELISA	20
2.2.4 DNA-Based Methods	24
2.2.4.1 Species-Specific PCR (SSP)	25
2.2.4.2 Temperature/Denatured Gradient Gel Electrophoresis (T/DGGE)	26
2.2.4.3 PCR-RFLP	26
2.2.4.4 DNA Barcoding	27
2.2.4.5 Real-Time PCR	29
2.2.4.6 Oligonucleotide Microarray	30
 2.2.4.3 PCR-RFLP 2.2.4.4 DNA Barcoding 2.2.4.5 Real-Time PCR 2.2.4.6 Oligonucleotide Microarray 2.3 Nanotechnology in DNA Detection 	32
2.3.1 Nanogap Electrodes for the Label Free Detection of DNA	34
2.3.1.1 Planar Nanogap Devices for DNA Detection	36
2.3.1.2 Nanogap Detectors in Nanofluidics	37
2.3.1.3 MOSFET and ISFET	39
2.3.1.4 NanoMIM Devices for Sensing DNA Target	42
2.3.1.5 Carbon Nanotube-based Nanogap Devices for Sensing DNA	44
2.3.1.6 Quantum Dot (QD) for Label Free DNA Sensing	46
2.3.1.7 Surface Enhanced Raman Spectroscopy for Label Free DNA Detection	49
2.3.1.8 DNA Hybridization Detection Using Gold Nanoparticles (GNP)	51
2.4 Conclusion	57
Chapter 3: Development Of Swine Specific DNA Markers For Biosensor	60
Applications	
3. Abstract	61
3.1 Introduction	61
3.2 Methodology	64
3.3 Discussion	65
3.4 Conclusion	67
Chapter 4: Swine-Specific PCR-RFLP Aassay Targeting Mitochondrial	68
Cytochrome B Gene for Semiquantitative Detection of Pork in Commercial	

Meat Products

4. Abstract	69
4.1 Introduction	69
4.2 Materials and Methods	74
4.2.1 Sample Collection and DNA Extraction	74
4.2.2 Primer Design	75
4.2.3 PCR Amplification	76
 4.2.3 PCK Amplification 4.2.4 RFLP Analysis of PCR Products 4.3 Results and Discussion 4.3.1 Specificity Test 4.3.2 Pork Detection in Mixed Meat 4.3.3 RFLP Analysis of the PCR Products 4.3.4 Sensitivity Test 4.4 Conclusion 	76
4.3 Results and Discussion	77
4.3.1 Specificity Test	77
4.3.2 Pork Detection in Mixed Meat	80
4.3.3 RFLP Analysis of the PCR Products	86
4.3.4 Sensitivity Test	90
4.4 Conclusion	93
Chapter 5: Analysis of Pork Adulteration in Commercial Burger and	95
Meatball Formulation Targeting Porcine-Specific Mitochondrial	
Cytochrome B Gene by TaqMan Probe Real-Time Polymerase Chain	
Reaction Assay	
5. Abstract	96
5.1 Introduction	97
5.2 Materials and Methods	101
5.2.1 Sample Collections	101
5.2.2 Preparation of Burger Meats	101
5.2.3 Calibration and Validation Standards of Beef Burgers	102
5.2.4 Preparation of Meatballs	102
5.2.5 Calibration and Validation Standards of Beef Meatballs	102
5.2.6 DNA Extraction	102
5.2.7 Primer and Probe Design	103
5.2.8 Real-Time PCR Analysis	104
5.2.9 Construction of Standard Curve and Target Quantification	104
5.2.10 Statistical Analysis and Validation	105

5.3 Results and Discussion	105
5.3.1 Real-Time PCR System	105
5.3.2 Specificity Test	107
5.3.3 PCR Efficiency and Sensitivity	110
5.3.4 Calibration and Validation by Partial Least Square Model	116
5.3.5 Selection of the Optimal Number of Factors in PLS Model	119
5.3.6 Residuals Analysis	120
5.3.7 Comparison of Predicted Values with RT-PCR Determined Values	120
5.3.8 Analysis of Commercial Burgers and Meatballs	124
5.4 Conclusion	126
Chapter 6: Nanoparticle Sensor for Label-Free Detection of Swine DNA in	128
PCR Pproducts and Mixed Biological Samples	
6. Abstract	129
6.1 Introduction	130
 PCR Pproducts and Mixed Biological Samples 6. Abstract 6.1 Introduction 6.2 Materials and Methods 6.2.1 Sample Collection 	133
6.2.1 Sample Collection	133
6.2.2 Extraction and Purification of DNA	133
6.2.3 PCR Amplification	135
6.2.4 Synthesis of Colloidal Gold Nanoparticles	136
6.2.5 Identification of PCR Product by Gold Nanoparticles	136
6.2.6 Optimization of Buffer Concentration and Temperature	137
6.2.7 Sequence Identification and Mismatch Detection by Gold Colloids	138
6.2.8 Detection of Swine DNA in Mixed Meat Mixture	139
6.2.9 Determination of the Limit of Detection	140
6.3 Results and Discussion	141
6.3.1 PCR Amplification	141
6.3.2 Characterization of Gold Nanoparticles	141
6.3.3 Sequence Identification and Mismatch Detection	146
6.3.4 Sequence Detection in Mixed Biological Samples	150
6.3.5 Determination of LOD	153
6.3.6 Efficacy and Limitation of the Current Assay	153

6.3.7 Legitimacy of This Assay to Be Label-Free	154
6.4 Conclusion	155
Chapter 7: Gold Nanoparticle Sensor for The Visual Detection of Pork	157
Adulteration in Meatball Formulation	
7. Abstract	158
7.1 Introduction	159
7.2 Materials and Methods	161
7.2.1 Swine Specific Probe Design	161
7.2.1 Swine Specific Probe Design7.2.2 Synthesis of Colloidal Gold Nanoparticles7.2.3 Preparation of Meatballs and Extraction of DNAs	161
7.2.3 Preparation of Meatballs and Extraction of DNAs	162
7.2.4 Detection of Single-Stranded and Double-Stranded DNAs	162
7.2.5 Pork Identification in Beef and Chicken Meatballs	163
7.2.6 Determination of LOD	164
7.3 Results and Discussion	165
7.3.1 Characterization of Gold Nanoparticles and Detection of DNA	165
7.3.2 Detection of Pork Adulteration in Mixed Meatballs	171
7.3.3 Determination of LOD	172
7.3.4 Impact of Spectral Shift on Biosensor Applications	174
7.3.5 Efficacy and Limitation of the Current Assay	175
7.4 Conclusion	177
Chapter 8: Nanobiosensor for Detection and Quantification of DNA	178
Sequences in Degraded Mixed Meats and Meatball Formulations	
8. Abstract	179
8.1 Introduction	180
8.2 Materials and Methods	182
8.2.1 Design of Porcine-Specific Oligo-Probes	182
8.2.2 Synthesis of Colloidal Gold Nanoparticles	183
7.2.3 Preparation of Hybrid Nanobioprobe	184
8.2.4 Specificity and Sensitivity Tests	184
8.2.5 Specificity and Sensitivity Tests in Mixed Biological Samples	185
8.2.6 Specificity and Sensitivity Tests in Meatball Formulations	186

8.2.6 Fluorescence Measurement	187
8.2.7 PCR Amplification	187
8.3 Results and Discussion	187
8.3.1 Detection and Quantitation Principle	188
8.3.2 Preparation of Species-Specific Nanobiosensor Probes	190
8.3.3 Characterization of Hybrid Nanobioprobe	190
8.3.4 Quenching Mechanism	191
8.3.5 Species Specificity of the Prepared Nanobiosensor Probe	194
8.3.6 Pork Detection in Mixed Biological Samples	196
8.3.7 Hybridization Kinetics	201
8.3.8 Pork Quantitation in Pure and Mixed Biological Samples	204
8.3.9 Pork Quantitation in Meatball Formulations	208
8.4 Conclusion	211
Chapter 9: Thesis Conclusion and Recommendation for Future Works	205
9.1 Thesis Conclusion	213
9.2 Recommendation for Future Works	218
References	219
Appendix A: Supplementary Materials	244
Appendix B: Front Pages of Published Papers	253
Appendix C: Product Exhibited From This Thesis Works	
OTHIS	

LIST OF FIGURES

Figure	Caption	Page
2.1	Schematic presentation of indirect and direct ELISA	22
2.2	Prototypes of nanogap electrodes for label free biomolecule sensing	35
2.3	DNA detection with nanofluidic channel with nanogap detector	38
2.4	ISFET- and MOSFET-based biosensor for DNA detection	40
2.5	Schematic representation of nano-MIM sensor device to detect DNA	43
2.6	SWCNT-based nanogap devices for DNA detection	45
2.7	DNA hybridization detection by CdSe/ZnS core/shell quantum dot	48
2.8	Label-free detection of DNA hybridigestion using SERS	50
2.9	A template for multifunctional gold nanoparticles	52
2.10	Colorimetric and spectroscopic discrimination of aggregated and non-	54
	aggregated gold nanoparticles	
2.11	Schematic representations of the two conformations of the dye-	56
	oligonucleotide-GNP conjugate	
4.1	Specificity test of the designed primers	79
4.2	Specificity test in autoclaved pork-beef and pork-chicken binary	82
	admixtures	
4.3	Sensitivity test in autoclaved ternary mixtures of pork, beef and wheat	83
Ô	flour	
4.4	Screening of commercial products	85
4.5	RFLP analysis of porcine PCR products	88
4.6	Gel-images showing PCR products from various amount of swine	92
	template DNA.	
5.1	Fluorescent profiles of PCR products amplified from porcine-specific	109
	and endogenous PCR systems	
5.2	Fluorescence profiles of PCR products obtained from beef burgers and	112
	meatball	
5.3	Standard curves for porcine PCR products obtained from beef burgers	114

and meatballs

5.4	Relationship between actual and real-time PCR predicted value	118
5.5	PRESS values obtained from PLS model	121
5.6	Concentration residuals vs. fitted Cq values	122
6.1	Electrophoresis analysis of PCR products of 11 different species	142
6.2	TEM images of gold nanoparticles (GNPs) before and after salt-induced	143
	aggregation	
6.3	Absorption spectra of aggregated and non-aggregated GNPs	145
6.4	Identification of PCR products and nucleotide mismatch by unmodified	148
	GNPs	
6.5	Identification of swine DNA in heat and pressure processed mixed	151
	genomic DNA mixtures	
6.6	Determination of LOD for pork in raw pork-venison binary admixture	152
7.1	TEM images of colloidal particles before and after salt-induced	166
	aggregation	
7.2	Absorption spectra of aggregated and non-aggregated GNPs	168
7.3	Identification of swine DNA in mixed meatballs	170
7.4	Determination of LOD for pork in ready-to-eat beef meatballs	173
8.1	Schematic representations of quantification and operating principles of	189
	swine nanobiosensor probe	
8.2	Emission spectra of 15 nM thiolated and non-thiolated oligo-TMR	193
	conjugates	
8.3	Detection of specific DNA sequences and single nucleotide mismatches	195
	using porcine-specific nanobiosensor probes	
8.4	Pork detection in raw pork-beef binary admixtures by porcine-specific	197
	nanobiosensor probes	
8.5	Pork detection in autoclaved pork-beef binary admixtures by porcine-	198
	specific nanobiosensor probes	
8.6	Standard curves of the hybridization kinetics of swine nanobiosensor	202
	probes with synthetic and AluI-digested swine DNA	
8.7	Determination of pork in raw and autoclaved pork-beef binary	206

	admixtures by porcine-specific nanobiosensor probes	
8.8	Pork detection in ready-to-eat pork-contaminated beef meatballs and	209
	commercial meatballs of various species	
8.9	Pork estimation in pork-adulterated beef meatball and relationship	210
	between actual and recovered values	
S-8.1	TEM image of citrate-tannate coated gold nanoparticles and size	251
	distribution chart	
S-8.2	UV-vis spectra of citrate-tannate-coated gold nanoparticles and TMR-	251
	labeled thiolated oligo-probe	
S-8.3	Gel image of 411 bp swine PCR products amplified from swine DNA	251
	extracted from pure raw pork and 2.5-h autoclaved pork-beef mixtures	
Õ	Gel image of 411 bp swine PCR products amplified from swine DNA extracted from pure raw pork and 2.5-h autoclaved pork-beef mixtures	

LIST OF TABLES

Table	Caption	Page
3.1	List of AluI-fragments selected for biosensor applications	65
3.2	Alignment results of a 27-nt AluI-fragment with different species	66
4.1	Primers' sequences used in the study	76
4.2	Molecular sizing statistic of pork PCR products and restriction digests	87
4.3	Sensitivity of the swine-specific PCR system	91
5.1	Primers' and probes' sequences used in the study	104
5.2	Specificity of real-time PCR system	108
5.3	Number of quantification cycles (Cq) at which fluorescence was first	113
	detected from 10 ng DNA of pork-adulterated beef burgers and meatballs	
5.4	Comparison of results obtained by PLS and real-time PCR	123
5.5	Analysis of commercial burgers and meatballs	126
6.1	Data used for the determination of DNA concentration and purity	135
6.2	Sequences of oligonucleotides used	136
8.1	Probes and target oligo sequences used	183
S-3.1	AluI-sites in porcine mitochondrial genome	244
S-8.1	Data used in the generation of standard curve with synthetic oligo target	246
S-8.2	Data used in the generation of standard curve with AluI-digested swine	247
C	DNA	
S-8.3	Quantification of swine DNA from <i>Alu</i> I-digested mixed DNAs, extracted	248
	from raw pork-beef mixtures	
S-8.4	Quantification of swine DNA from AluI-digested mixed DNAs, extracted	249
	from autoclaved pork-beef mixture	
S-8.5	Data used for the generation of standard curve for quantification of pork	250
	in beef meatball	
S-8.6	Quantification of pork in the validation set of beef meatball	250

Symbols and Abbreviations

ANS	Anserine (B-alanyl-L-1 methylhistidine)
APTES	3-aminopropyltriethoxysilane
BAL	Balenine (ß-alanyl-L-3 methylhistidine)
BLAST	Basic local alignment search tool
BOLD	Barcode of life data systems
bp	Base pair
BSE	Base pair Bovine spongiform encephalopathy Carnosine (β-alanyl -L- histidine) Consortium for the barcode of life
CAR	Carnosine (ß-alanyl -L- histidine)
CBIOL	Consortium for the barcode of life
CNT	Carbon nanotube Capillary electrophoresis
CE	Capillary electrophoresis
CO1	Cytochrome oxidase 1
Cq	Quantification cycle
Cy3	Cyanine 3
Cy5	Cyanine 5
Cytb	Cytochrome b
DGGE	Denatured gradient-gel electrophoresis
DL	Detection limit
DNA .	Deoxy-ribonucleic acid
ds-DNA	Double-stranded DNA
DPN	Dip-pen
EC	European Commission
EG ₃ -OH	Triethylene glycol
EG ₃ -COOH	11-mercaptoundecyl tryethylene glycol acetic acid
ELISA	Enzyme-linked immunosorbant assay
EtBr	Ethidium bromode
Eu18SrRNAF	Eukaryotic 18S rRNA specific forward primer
Eu18SrRNAF	Eukaryotic 18S rRNA specific reverse primer
	Eukaryotic 18S rRNA specific TaqMan probe

EU	European Uninon
FAM	6-carboxyfluoresceine
FF	Frank furter
FRET	Fluorescence resonance energy transfer
fg	Femtogram
Fmol L ⁻¹	Femtomole per liter
g	Gram
GNP	Gold nanoparticle
h	hour
IABkFQ	3-Iowa black FQ
I _D	Drain current
IDT	Intregated DNA Technologies
IEF	Isoelectric focusing
ISFET	Gold nanoparticle hour 3-Iowa black FQ Drain current Intregated DNA Technologies Isoelectric focusing Ion-sensitive field-effect transistor
Kb	Kilo-base pair
LCD	Liquid crystal display
LED	Light-emitting diode
LOD	Limit of detection
L	Liter
Mab .x	Monoclonal antibodies
Mb	Mega base pair
MB	Meatball
MBM	Meat and bone meal
mg	Miligram
μg	Microgram
$\mu g m L^{-1}$	Microgram per mililiter
min	minute
mL	Mililiter
μL	Microliter
Μ	Molar or mole per liter
mM	Milimolar or milimole per liter

μM	Micromolar or micromole per liter
MALDI-TOF	Matrix-assisted laser desorption/ionization time-of-flight mass
MS	spectrometry
MIM	Metal-insulator-metal multilayer
MNG	Metal nanogap
MNGD	Metal nanogap devices
MLC	Myosin light chain
MOSFET	Metal-oxide-semiconductor field-effect transistor
MRI	Magnetic resonance imaging
nMOSFET	Metal-oxide-semiconductor field-effect transistor Magnetic resonance imaging n-type MOSFET p-type MOSFET Mitochondrial DNA
pMOSFET	p-type MOSFET
Mt-DNA	Mitochondrial DNA
NCBI	National center for biotechnology information
NeCMOS	Nanogap-embedded complementary metal-oxide-semiconductor
ng	Nanogram
ng mL ⁻¹	Nanogram per mililiter
nm	Nanometer
nM	NanoMolar
NNI	Natinal nanotechnology initiatives
OC .X	Osteocalcin
P _{ab}	Polyclonal antibody
PBS	Phosphate buffer saline
PCG	Protein coding gene
PCR	Polymerase chain reaction
pg	Picogram
pМ	Picomolar or pecomole per liter
Poly A	Poly adenosine
PSA	Prostate-specific antigen
qPCR	Quantitative PCR
QD	Quantum dot
RMSEC	Root mean square error of calibration

RMSEV	Root mean square error of validation
R^2	Correlation coefficient
RT-PCR	Real-time PCR
RNA	Ribonucleic acid
rRNA	Ribosomal RNA
RFLP	Restriction fragment length polymorphism
S	Second
SAM	Self-assembled monolayer
SB	Streaky bacon
SERS	Self-assembled monolayer Streaky bacon Surface enhanced Raman spectral Silicon-on-insulator Single-nucleotide polymorphism
SOI	Silicon-on-insulator
SNP	Single-nucleotide polymorphism
SPR	Surface plasmon resonance
ss-DNA	Single-stranded DNA
SSP	Species-specific PCR
STR	Short tandem repeat
SWCNT	Single-walled carbon nanotube
SwcytbF	Swine cytochrome b specific forward primer
SwcytbR	Swine cytochrome b specific reverse primer
SwcytbTqM	Swine cytochrome b specific TaqMan probe
TGGE	Temperature gradient-gel electrophoresis
TMR	Tetramethyl rhodamine
ΤΟΡΟ	Trioctylphosphine
Tox	Thick gate-oxide
Trox	Thin-layer of gate oxide
VNTR	Variable tandem repeat
V_{T}	Threshold voltage

PEMBANGUNAN PENGESAN PARTIKEL-NANO UNTUK MENGESAN DAN Mengkuantifikasi DNA Babi di Dalam Campuran Biologi dan Sampel Komersial untuk Autentikasi Halal

ABSTRAK

Pengesahan komponen terisytihar di dalam daging dan produk-daging sangat penting untuk memastikan ketelusan dalam pelabelan makanan dan untuk melindungi pengguna dari segi kepercayaan, pegangan agama, kesihatan dan usaha gigih. Pulangan tahunan untuk pasaran makanan halal sedunia telah mencapai sehingga 661 billion dollar Amerika pada 2011 dan akan berkembang dalam tahun-tahun yang akan datang. Untuk menghadapi pasaran yang berdaya saing tinggi dan untuk mengaut keuntungan yang berlebihan, penipuan label jenama Halal kerap berlaku. Oleh kerana daging babi dan hasil lebihannya mudah didapati pada harga yang lebih murah, kes penukaran daging halal yang lebih tinggi harganya dengan daging babi yang lebih rendah nilainya dalam produk daging komersial kerap berlaku. Walau bagaimanapun, campuran daging babi dan bahan-bahan lebihannya yang diperolehi dalam makanan Halal dan Kosher adalah satu perkara yang serius kerana sensitiviti agama yang mana masing-masing. Oleh itu, peralatan analisis yang sensitif, berkeupayaan tinggi, dan mudah digunakan sangat diperlukan untuk mengesan dan mengira tahap pencemaran daging babi dalam produk makanan Halal dan Kosher.

Kaedah konvensional analisis DNA yang berasaskan kepada tindak balas rantai polymerase (PCR) telah mencapai keupayaan tertinggi dan mempunyai had tertentu dalam mengenalpasti penanda DNA yang pendek dan terbukti boleh dikesan walaupun dalam keadaan pemprosesan makanan yang kritikal. Tambahan pula, kaedah berasaskan PCR bukan sahaja mahal, tetapi juga memerlukan pengesahan produk untuk menghapuskan keraguan dalam situasi tertentu. Pengesanan DNA menggunakan nanopartikel emas (GNPs) adalah sangat baik kerana ia tidak memerlukan apa-apa instrumen yang kompleks dan mahal dan membolehkan pengesanan yang pantas dan boleh dipercayai menggunakan jujukan DNA yang sangat pendek (15-30 pb).

Dalam laporan ini, kami telah membangunkan dua jenis pengesan berasaskan pengesan-GNP. Pengesan pertama ialah pengesan kalorimetri yang membolehkan pengesanan visual daripada amplifikasi dan bukan amplifikasi PCR menggunakan penanda DNA babi (27 dan 25 nukleotida) dalam tempoh 10 minit tanpa apa-apa alat bantuan pada campuran produk daging terproses dan yang belum diproses. Ia juga membolehkan pengesahan keputusan visual yang ditentukan oleh ciri-ciri spektra penyerapan GNPs terkumpul dan tidak terkumpul yang berbeza-beza. Had pengesanan (DL) kaedah ini adalah diantara 4-6 ng μ L⁻¹ DNA genomik babi. Pengesan kedua adalah probnanobio hibrid yang secara kovalen bersepadu dengan label fluorofor 27-nukleotida pecahan-AluI daripada gen mitokondria cytochrome b (mt-cytb) babi. Ia membenarkan pengesanan dan kuantifikasi banyak salinan mt-DNA babi secara serentak dalam tempoh masa 60 minit dengan bantuan spektroskopi pendarfluor yang sangat efektif dari segi kosnya. Had pengesanan kaedah ini untuk daging babi tercemar yang teruk diautoklaf bersama campuran daging lembu adalah (0.42 ng μ L⁻¹) di mana saiz template PCR yang lebih panjang telah terpecah kepada serpihan kecil yang menyebabkan ianya gagal dikesan menggunakan kaedah PCR.

Penanda DNA lebih pendek (15-30 pb) yang sesuai untuk aplikasi biosensor ini telah dihasilkan oleh pencernaan genom mitokondria babi secara dalam-silico dengan menggunakan enzim sekatan AluI. Sebelum aplikasi biosensor, spesifikasi penanda mt-DNA babi diuji dengan membangunkan PCR-sekatan serpihan polymorphism panjang (RFLP) yang singkat (109 pb) seperti prob TaqMan yang digunakan untuk analisis kuantitatif real-time PCR (qPCR) yang mengandungi laman AluI yang sesuai dengan amplikon. Kedua-dua PCR-RFLP dan ujian qPCR didapati sangat berkesan untuk mengesan sehingga serendah 0.0001 ng DNA genomic babi yang tulen dan 0.001 ng daripada pencemaran babi dalam produk daging komersil yang sedia untuk dimakan.

DEVELOPMENT OF NANOPARTICLE SENSORS FOR THE DETECTION AND QUANTIFICATION OF SWINE DNA IN MIXED BIOLOGICAL AND COMMERCIAL SAMPLES FOR HALAL AUTHENTICATION

ABSTRACT

Verification of declared components in meats and meat products is essential to ensure transparency in food labeling and to safeguard consumers' trusts, religious faiths, health, and hard earned fortunes. The annual turnover of the global Halal food market has reached USD 661billion in 2011 and will be proliferating in the coming years. To coup up in highly competitive market and to make an excessive profit, fraudulent labeling of Halal brand is frequently occurring. As pork and pork-derivatives are easily available at cheaper prices, replacement of higher priced Halal meats in commercial meat products with lower valued pork has become quite prevalent. However, the mixing of pork and pork-derived materials in the Halal and Kosher foods is a serious matter as they are not allowed to be consumed by the followers of Islam and Judaism by respective religious laws. Thus, sensitive, dependable, and easy performable analytical tools have long been desired to detect and quantify the minute level of adulterated pork in Halal and Kosher foods.

Conventional methods based on polymerase chain reaction (PCR)-based DNA analysis has reached a ceiling stage and has limitations in detecting shorter-length DNA markers which are proven to be survived in the harsh conditions of food processing. Further, PCR-based methods are not only expensive but also needs product authentication to eliminate ambiguity in certain instances. DNA detection using gold nanoparticles (GNPs) is very promising because it does not need any complex and expensive instrumentations and allows rapid and reliable detection of very short-length (15-30 bp) DNA sequences.

In this report, we have developed two types of GNP-based sensors. The first one is the colorimetric sensor that allowed visual detection of PCR amplified and non-amplified swine DNA markers (27 and 25 nucleotides) within 10 min without any instrumental aids in a mixed background of processed and unprocessed meat products. It also permitted the verification of the visually determined results by the distinct features of the absorption spectra of the aggregated and non-aggregated GNPs. The detection limit (DL) of this method varied between 4-6 ng μ L⁻¹ of porcine genomic DNA. The second one was the hybrid nanobioprobe that covalently integrated a fluorophore labeled 27-nucleotide *Alu*I-fragment of swine mitochondrial cytochrome b (mt-cytb) gene. It allowed simultaneous detection and quantification of porcine muticopy mt-DNA targets within 60 min with the help of a cost-effective fluorescent spectroscopy. The DL of this method was 0.42 ng μ L⁻¹ of contaminated pork in severely autoclaved pork-beef binary mixture in which longer-size PCR template were broken down to smaller fragments leading to detection failure by the PCR- methodology.

The shorter-lengths DNA markers (15-30 bp) suitable for biosensor application were developed by in-silico digestion of swine mt-genome with *Alu*I restriction enzymes. Prior to biosensor applications, the swine specificity of the developed mt-DNA markers was tested by developing a very short (109 bp) PCR-restriction fragment length polymorphism (RFLP) assay as well as a TaqMan probe quantitative real-time PCR (qPCR) assay containing appropriate *Alu*I-sites within the amplicon. Both the PCR-RFLP and qPCR assays were effective to detect as low as 0.0001 ng of pure swine-genomic DNA and 0.001 ng of pork contamination in ready-to-eat commercial meat products.

RESEARCH BACKGROUND, OBJECTIVES AND SCOPES

o this term is protected by original copyright

RESEARCH BACKGROUND, OBJECTIVES AND SCOPES

1.1 Introduction

"Halal" is a Quranic term meaning allowed or permitted. Halal food means Shariah compliant hygienic foods and drinks that are prepared following the Shariah law of Islam (Standard, 2009). The global Halal food industry stood at USD 641 billion in 2010 and is estimated to cross USD 661 billion by 2011. If pharmaceuticals and cosmetics are included, the total turnover of global Halal market will exceed to USD 2.3 trillion by 2011 (Badawi, 2011). The current trends show the industry will be proliferating in the coming years to keep space with the ever increasing demands for Halal products.

"Halal Logo" on finished consumer goods is regarded as a symbol of Shariah compliant products and is trusted by 1.8 billion Muslim consumers of the globe (Badawi, 2011). To survive in highly competitive markets and gain additional profit, fraudulent labeling of Halal brand is frequently occurring (Aida,Che Man,Wong,Raha &Son, 2005; Che Man,Aida,Raha &Son, 2007; Murugaiah et al., 2009; Rohman,Sismindari,Erwanto &Che Man, 2011). As minced meat is being increasingly used as additives in most of the modern foods, (Tanabe et al., 2007) verification of labeling on finished foods should ensure food safety (i.e., unexpected occurrence of food allergies), gain consumer trusts, and promotes fair trades in local and international markets. According to EC legislation (178/2002) on food safety (Commission, 2002) all stake holders in a food supply chain must be able to clearly identify all raw materials used in the preparation of food products. In fact, most countries in today's world have regulatory bodies to monitor the labeling practices of consumer goods (Tanabe *et al.*, 2007).

Pork is a potential adulterant in Halal and Kosher food products because of its easier availability and cheaper prices than those of Halal (allowable) meats (Regenstein, Chaudry & Regenstein, 2003; Tanabe et al., 2007). Several molecular techniques based on lipids (Rohman et al., 2011; SzabÓ, FÉBel, SugÁR & RomvÁRi, 2007), proteins (Ayaz, Ayaz & Erol, 2006; Chen, Hsieh & Bridgman, 2004), and DNA (Aida et al., 2005; Che Man, Mustafa, Khairil Mokhtar, Nordin & Sazili, 2010; Rojas et al., 2010; Yusop, Mustafa, Che Man, Omar & Mokhtar, 2011) have been developed for the identification of meat species. Methods based on lipids are not reliable as both the type and content of fat can be significantly manipulated through the cooking process. Susceptibility of protein markers to heat and chemicals has diminished the dependability of the protein-based methods (Asensio, González, García & Martín, 2008). On the other hand, DNA-based molecular techniques have been emerged as a smart analytical tool due to codon degeneracy, higher stability and universal presence of DNA in majority of cells, enabling identical information to be obtained from the same animal, regardless of the tissue of origin (Ballin, Vogensen & Karlsson, 2009). Among the DNAbased methods, polymerase chain reaction (PCR) assays have received huge attention because of its easy operation and extraordinary power to amplify specific target sequences from few copies to easily detectable quantities even in a very complex pool of genomic DNAs (Li &Rothberg, 2004; Rodríguez, García, González, Hernández &Martín, 2005; Sakai et al., 2011). The sensitivity of the PCR assays can be further improved by targeting muticopy gene, such as mitochondrial (mt) gene with shorteramplicon lengths (Murugaiah et al., 2009; Tanabe et al., 2007).

PCR-assays of shorter amplicon-lengths are preferable for the analysis of compromised samples as they are less affected by degradation, amplify more efficiently, and better resolute in capillary electrophoretic (CE) separation (Aboud,Gassmann &McCord, 2010; Smith, Vigilant &Morin, 2002). It has been implicated that an amplicon-length of more than 150 bp (>150 bp) is unreliable for the analysis of species in processed food (Rojas *et al.*, 2010). However, a shorter amplicon in PCR assays can be hardly achieved without the compromise of specificity (Hird et al., 2006). A compromised PCR assay is problematic since it cannot be confirmed whether authentic target is detected or not.

Most of the DNA-detection techniques such as DNA microarray involve the labeling of target DNA with a fluorescent, radioactive or oxidizing agents (Teletchea, 2009). However, a labeled-based assay not only involves the additional cost of labeling but also brings error in the final results due to non-specific photobleaching of the fluorescent dye or other labeling agents (Niu, 2004). Recently, label-free methods based on surface plasmon resonance (SPR), electrochemical methods and mass based methods such as quartz crystal microbalance (QCM) and silicon cantilever have been documented (Niu, 2004). A label-free method based on SPR is particularly promising because of its higher sensitivity and operational simplicity. Typically, an SPR method measures the shift in SPR absorption angel at the interface of a metallic support and liquid medium upon target binding. Since the refractive index of the single-stranded DNA (ssDNA) and double stranded DNA (dsDNA) are significantly different, there is a large shift in SPR absorption angle when the target DNA hybridizes with the bound probe (Niu, 2004). Usually, a tag of higher refractive index is introduced into the probe to enhance the SPR sensitivity. A metallic particle such as gold nanoparticles (GNPs) are specially promising for this application because of its large dielectric constant, high density and biocompatibility (Niu, 2004). Actually, colloidal gold particles, covalently or non-covalently linked to oligonucleotide have been applied for the detection of specific sequences and single-nucleotide mismatches for decades (Dubertret, Calame &Libchaber, 2001; Elghanian, Storhoff, Mucic, Letsinger & Mirkin, 1997; Li & Rothberg, 2004; Maxwell, Taylor & Nie, 2002; Mirkin, Letsinger, Mucic & Storhoff, 1996; Storhoff et al., 2000). However, such studies were limited to the laboratory level model experiments with synthetic oligo-targets. No studies so far practically explored the sequence and mismatch detecting power of the oligo-nanoparticle conjugates in heterogeneous biological samples and processed food products.

1.2 Problem Statements

Species authentication methods based on morphology, lipid and protein markers are not reliable. DNA-based methods based on PCR are reliable but cannot detect shorter DNA targets. Methods based on fluorescent and radio-labeling can detect short oligo targets but incur additional cost and errors in the final results due non-specific photobleaching of the labeled dyes.

1.3 Study Objectives

1.3.1 General Objectives

To develop, characterize, and test nanobiosensor probes for the detection and quantification of shorter swine DNA markers of mitochondrial origins in mixed biological and commercial samples for Halal authentication.

1.3.2 Specific Objectives

i. To develop shorter-length porcine DNA markers suitable for biosensor applications, targeting muticopy genes such as mitochondrial genes. The multicopy genes should ensure available targets even in degraded samples,