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PENGKELASAN TUGAS BERASASKAN EEG ATAS VISUALISASI WARNA DAN 
BAYANGAN WARNA 

 
ABSTRAK 

 
Electroencephalography (EEG) adalah satu ukuran gelombang otak yang digunakan untuk 
memantau keadaan kesihatan pesakit dalam aplikasi perubatan dan bidang penyelidikan 
yang lain. Isyarat EEG juga digunakan untuk membangunkan sistem pengantara mesin otak 
(BMI). BMI membantu untuk membawa niat pengguna dan ia adalah sistem perantaraan 
bijak yang bertindak sebagai saluran komunikasi untuk menghantar mesej kepada seluruh 
dunia luar. Ia merupakan salah satu pendekatan komunikasi yang paling efisien bagi orang-
orang yang berbeza keupayaan. Sejak dua dekad yang lalu, ramai penyelidik telah tertumpu 
kepada pembangunan BMI yang sesuai menggunakan pelbagai isyarat EEG seperti potensi 
perlahan kortikal, P300 potensi, potensi dibangkitkan visual dan potensi peristiwa yang 
berkaitan. Tesis ini membincangkan perkembangan persepsi warna berdasarkan BMI 
menggunakan kaedah bukan invasif untuk orang yang berbeza keupayaan. Dua protokol 
yang menggunakan visualisasi dan imaginasi warna yang berbeza telah dikaji. Data EEG 
dikumpulkan daripada sepuluh subjek yang menggunakan mindset-24 EEG perolehan data 
instrumen dengan 19 saluran topi susunan elektrod. Data diproses dan ciri-ciri yang 
diekstrak dari data EEG dirakamkan. Set ciri yang diekstrak kemudian dimasukkan kepada 
rangkaian saraf tiruan untuk mengklasifikasikan tugas-tugas yang berbeza. Daripada 
keputusan klasifikasi, tenaga ciri entropi spektrum yang menggunakan rangkaian neural 
mempunyai berkebarangkalian prestasi pengkelasan yang tertinggi. Dalam isyarat EEG, 
jalur frekuensi dan pemilihan saluran memainkan peranan yang penting dalam 
meningkatkan prestasi klasifikasi dan mengurangkan bilangan ciri-ciri input. Dalam  
penyelidikan ini, jalur frekuensi dan saluran algoritma pemilihan dicadangkan untuk 
mencari jalur frekuensi yang berkaitan dan kedudukan elektrod (atau saluran) untuk 
protokol BMI yang dicadangkan. Keputusan ujikaji menunjukkan kombinasi jalur frekuensi 
alfa, beta dan gamma (αβγ) memberikan ketepatan pengelasan yang lebih baik dan 9 saluran 
yang menggunakan hasil algoritma pemilihan klasifikasi ketepatan yang lebih baik melebihi 
90% jika dibandingkan dengan kaedah konvensional. 
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CLASSIFICATION OF EEG BASED TASK ON COLOUR VISUALIZATION AND 
COLOUR IMAGERY 

 
ABSTRACT 

Electroencephalography (EEG) is a measure of brain waves used to monitor the state of 
health of the patients in medical applications and other research areas. EEG signals are also 
used to develop Brain Machine Interface (BMI) system. BMI helps to bring out the intention 
of users and it is an intelligent interfacing system which acts as a communication channel for 
sending messages to command the external world. It is one of the most promising 
communication approach for the differentially enabled people.  Over the past two decades, 
many researchers have concentrated on developing a suitable BMI using variety of EEG 
signals such as slow cortical potentials, P300 potentials, visually evoked potentials and event 
related potentials. This thesis discusses the development of colour perception based BMI 
using non invasive method for the differentially enabled people. Two protocols using 
visualization and imagination of different colours were investigated. The EEG data was 
collected from ten subjects using mindset-24 EEG data acquisition instrument with 19 
channel electrode cap arrangement. The data is preprocessed and features are extracted 
from the recorded EEG data. The extracted feature set is then fed to a neural network model 
to classify the different tasks. From the observed classification results, the spectral energy 
entropy features using probabilistic neural network has the highest classification 
performances. In EEG signals, frequency band and channel selection plays an important role 
in increasing the classification performance and in decreasing the number of input features. 
In this research work, frequency band and channel selection algorithm is proposed to find the 
relevant frequency bands and electrode positions (or channel) for the proposed BMI 
protocols. Experimental results show that the alpha, beta and gamma (αβγ) frequency band 
combinations gives better classification accuracy and the selected 9 channels using the 
proposed channel selection algorithm yields a better classification accuracy of above 90% 
when compared to the conventional method. 
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CHAPTER 1 

 

INTRODUCTION 

 

This chapter focuses on the development of Brain Machine Interface (BMI) 

systems that can be used as a assistive device for the differentially enabled community. 

This chapter also deals with the objectives of the proposed research along with the 

organization of the thesis. 

 

1.1 Overview 

Electroencephalography (EEG) is defined as a measure of electrical activity 

recorded from the brain using electrodes (Teplan, 2002). EEG signals (or brain signals) 

indicate the mental state of the brain and these evoked signals can be used to control 

external devices. EEG signals can be recorded using invasive, semi invasive and non-

invasive methods. Non-invasive method is the safest and they offer significant benefits 

with no surgical risks. EEG signals are widely used for clinical purposes such as 

monitoring patient health, diagnosing mental disorders and evaluating the effects of 

smoking, drinking (alcohols) and drugs. EEG signals can be used in BMI based 

communication systems and also in lie detection and biometric developing systems 

(Wiki_BCI, 2011; Farwell et al., 1991).  

 

BMI is an interfacing system that provides a communication link between the 

human brain and a digital computer using EEG signals (Wolpaw et al., 2004). BMI aims 

to develop a communication system for the people who are paralyzed (or differentially 

enabled) and suffering with severe neuromuscular disorders such as quadriplegics, 
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amyotrophic lateral sclerosis (ALS), brainstem stroke, and spinal cord injury. Using 

BMI, the thought-controlled EEG signals can drive computers directly rather than 

controlling them by physical means.    

 

Starting from 1970’s, in BMI research, various approaches has been developed for 

recording the EEG signals. Initially, BMI researchers used implanted (or invasive) 

electrodes on monkey. Later, they implanted electrodes on human to control computer 

cursors, TV operations and robotic arms (Kennedy et al., 2000; Wiki_BCI, 2011). Over 

the past few decades, many researches have developed BMI systems with implanted 

electrodes. Nowadays, the scalp electrodes are widely used and it overcomes the 

problem in using implanted electrodes such as inconvenience and the need of specialist 

in implanting electrodes without harming the brain (Kennedy et al., 2000). Previous 

research works also indicate the numerous advancements that have occurred in the past 

two decades on developing a BMI using various types of EEG signals such as visual 

evoked potential (VEP), slow cortical potential (SCP), P300 evoked potential, 

sensorimotor activity and mental tasks (Wolpaw et al., 2000; Wolpaw et al., 2004; 

Vaughan et al., 2003; Bashashati et al., 2007).  All these BMI methods provide an 

alternative communication mode for people having movement disorders. However, 

users require adequate training to control the BMI system and can able to perform 

maximum of five control actions (or tasks). The increase in number of control actions in 

BMI lead to decrease in classification performance (Li et al., 2007). Hence, in order to 

develop a simple and universal BMI system which works without any training and also 

has more number of control actions without decreasing the performance, BMI system 

based on colour perception has been formulated.  
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The aim of this research work is to develop a BMI system using colour 

perception, which is relatively new in BMI research. Authors Tripathy et al., have 

investigated the effect of different colours on the EEG signal while visualizing and 

analyzed whether different colours affect the behavior of EEG signals (Tripathy et al., 

2006). Using this theoretical concept of colour perception, the BMI using colour 

visualization task (CVT) and colour imagery task (CIT) have been proposed and 

analyzed to help the differentially enabled community. CVT uses the visualization of 

colours and CIT uses the imagination of colours in a relaxed condition. The 

effectiveness of the proposed two methods was analyzed using different features and 

neural network models. Moreover, in BMI applications, a large number of frequency 

bands and channels are used and they lead to increase in number of input features which 

in turn increases the complexity of the system. Hence, to minimize the number input 

features and to enhance the BMI performance, frequency band selection using 

combination method and channel selection using statistical approach were analyzed and 

has been discussed in this research work.  

 

1.2 Problem Statement and Significance of the Study 

People normally can communicate their thoughts through speech. People with 

severe hearing impairment, voice impairment and physical impairment require a 

suitable medium to communicate. Severe hearing and voice impaired people are able to 

convey their thoughts through gesture signs and facial expressions. However, people 

who are physically impaired severely cannot show any expressions using their hands or 

face. But they are mentally able and can communicate through their brain signals using 

BMI.  In the past two decades, several research works were done in the area of BMI 

using different EEG signals. Researchers have analyzed the EEG signals based on 
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parametric and non-parametric feature extraction methods, time domain analysis, 

frequency domain analysis and time frequency analysis (Wolpaw et al., 2000; Wolpaw 

et al., 2004; Vaughan et al., 2003; Bashashati et al., 2007).  

 

 Most of the researches on BMI are carried out using both invasive and non-

invasive method. But non-invasive method is the safest one and more protective way of 

developing BMI. Previous research works on BMI indicates that the performances of a 

BMI system is gradually reduced when the number of tasks is increased (Li et al., 2007; 

Wolpaw et al., 2004; Gupta et al., 2009). In this thesis, non-invasive BMI system based 

on CVT and CIT are developed using visualization and imagination of different colours. 

The number of tasks is also increased to eight. These protocols were developed in such 

a way, that the subject is in relaxed mental state and free from medication during the 

entire data collection. In BMI applications, the number of input features are normally 

high due to presence of a large number of scalp electrodes (or channels) and frequency 

bands. To minimize the number of input features and to find the relevant frequency 

bands and channels, frequency band and channel selection method were proposed in this 

research.  
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1.3 Research Objectives 

The purpose of this research is to develop a simple BMI system using colour 

perception for the differentially enabled community. The objectives of this research are 

described below: 

i. To develop a protocol for the data collection using non-invasive method 

 The BMI using invasive method involves implanted electrodes which is very 

risky, may leads to brain injury and cause discomfort in usage. Also, it is expensive and 

requires certified experts to implant the electrodes. The non-invasive method uses scalp 

electrodes which is user-friendly in handling and does not need an expert. The data 

collection protocol must be simple and trouble-free for the users as the BMI involves 

mental works. In this research work, simple protocols are to be formulated to record the 

EEG signals emanated from the subjects while performing CVTs and CITs.  

 

ii. To select suitable features and neural classifiers for BMI system 

In order to extract the salient features which provide better classification 

performance of above 80%, suitable feature extraction algorithms and neural network 

classifiers have to be proposed for these CVTs and CITs.   

 

iii. To select the essential frequency band combination for the BMI 

EEG signals involve five different frequency bands namely delta, theta, alpha, 

beta and gamma, each band plays a vital role in the development of BMI. Most of 

researchers have adopted all the five frequency bands which in turn lead to an increase 

in the number of input features. In order to find the important bands and reduce the 

number of input features while developing a neural network model, it is proposed to 

develop simple algorithms.    
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iv. To select the number of EEG channels required for the BMI 

Maximum of 19 channels are required to collect EEG signal based on 10/20 

international standards. More number of channels increases the number of input 

features. Further, information from irrelevant channels leads to poor performance. 

Hence, to reduce the number of input features, it is required to develop appropriate 

channel selection algorithm. 

 

1.4 Scopes of work 

The scope of this work is to develop a suitable Brain Machine Interface (BMI) 

system for the differentially enabled people (aged 21 to 25 years). To provide a better 

communication system for them, colour perception based BMI system is designed in 

this work. In this research work, EEG signals are collected and analyzed using two 

protocols such as colour visualization (CVT) and colour imagery tasks (CIT) which are 

carried out to develop a suitable BMI system.  

The EEG signal will be analyzed through implementation of feature extraction 

methods and artificial intelligences techniques. In order to improve the quality of the 

EEG signal, digital signal processing techniques such as segmentation, overlapping and 

filtering are applied on the signal before feature extraction process. In this CVT and CIT 

based BMI system, the relevant channels and frequency bands are identified in the 

collected EEG signals; in order to reduce the number of input features and to enhance 

the classification performance. 
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